Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dąbrowska–Zielińska, K." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Chamber measurements of CO2 exchange in different wetland sites in Biebrza National Park, Poland
Pomiary strumienia wymiany CO2 w różnych siedliskach bagiennych Biebrzańskiego Parku Narodowego
Autorzy:
Rychlik, S.
Dąbrowska-Zielińska, K.
Powiązania:
https://bibliotekanauki.pl/articles/293287.pdf
Data publikacji:
2011
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
bagna
Biebrza
metoda kloszowa
wilgotność gleby
wymiana CO2
chamber method
CO2 exchange
soil moisture
wetlands
Opis:
Peatlands have historically functioned as important sinks of atmospheric carbon dioxide (CO2). Understanding the environmental drivers behind spatial and temporal variation in CO2 flux is therefore crucial for estimation of current carbon balances and forecasting the impact of climate warming. We present preliminary results of CO2 flux measurements in peatland habitats in the area of Biebrza National Park, Poland. The purpose of the study was to obtain a first season of estimates of CO2 exchange, and evaluate how fluxes depended on meteorological and biophysical conditions. Daytime measurements of NEE and ecosystem respiration (Reco) were performed by a static chamber method between the end of April and September in 2010. Following parameters: soil moisture, leaf area index (LAI), and biomass were also measured. Altogether, the studied peatlands had a mean seasonal NEE of -156 mg CO2·m-2·h-1 (a negative value indicates ecosystem uptake). We observed that the largest net uptake of CO2 occurred during the field campaigns in spring and early autumn. Average NEE measured in these periods approximate -600 and -340 mg CO2·m-2·h-1, respectively. A net loss of CO2 was instead observed in the middle of the summer, when rates of Reco also peaked. We found apparent relationships between the variation of daily air temperature, soil moisture, and CO2 fluxes on the basis of campaign mean values. The switch from average net uptake to net release of CO2 in midseason is suggested caused by a combination of factors, including warm temperatures, drier soil conditions, and loss of biomass by mowing.
Bagna od zawsze stanowiły naturalny rezerwuar atmosferycznego dwutlenku węgla (CO2). Dlatego właśnie zrozumienie procesów kształtujących zmiany przepływów strumienia CO2 w czasie i przestrzeni jest niezbędne do szacowania aktualnego bilansu węgla, jak również do analizy jego wpływu na proces globalnego ocieplenia w przyszłości. Artykuł prezentuje wstępne wyniki pomiarów strumienia dwutlenku węgla siedlisk bagiennych Biebrzańskiego Parku Narodowego. Celem przeprowadzonych analiz było uzyskanie wyników pomiarów wymiany strumienia CO2, przeprowadzonych w pierwszym sezonie pomiarowym (2010 r.), jak również ocena zależności istniejących między strumieniem wymiany CO2 a warunkami meteorologicznymi i biofizycznymi. Pomiary wymiany strumienia netto (NEE) oraz respiracji ekosystemu (Reco) przeprowadzane były w ciągu dnia, z zastosowaniem metody kloszowej, w okresie: od końca kwietnia do września 2010 r. Metoda polegająca na zastosowaniu przezroczystych kloszy ustawionych nad roślinnością, umożliwia obserwację zmian koncentracji CO2 emitowanego i pochłanianego przez roślinność i glebę. Dodatkowo wykonywano pomiary: wilgotności gleby, powierzchni projekcyjnej liści (LAI) oraz wysokości roślin, a także wielkości biomasy. Średnia sezonowa wartość NEE dla badanych obszarów bagiennych wyniosła - 156 mg CO2·m-2·h-1 (wartość ujemna oznacza, że ekosystem pochłaniał więcej CO2 niż go emitował). Zaobserwowano, że proces pochłaniania CO2 jest najintensywniejszy w okresie wiosny i wczesnej jesieni. Średnia wartość NEE dla tych okresów wynosiła odpowiednio -600 i -340 mg CO2·m-2·h-1. Zwiększenie wydzielania CO2 zaobserwowano w środku lata, kiedy wartości respiracji ekosystemu również uzyskiwały maksymalne wartości. Zauważono widoczne zależności między zmianami temperatury powierza w ciągu dnia, wilgotności gleby oraz strumieniem przepływu CO2 na postawie średnich wartości otrzymanych z kampanii terenowych. Stwierdzono, że większa emisja CO2 w środku lata spowodowana jest działaniem grupy czynników, takich jak: wyższa temperatura powietrza, mniejsza wilgotność gleby, a także mniejsza ilość biomasy (koszenie).
Źródło:
Journal of Water and Land Development; 2011, 15; 179-192
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Satellite-derived vegetation indices for Biebrza wetland
Wskaźniki roślinne dla obszaru bagien biebrzańskich wyprowadzone ze zdjęć satelitarnych
Autorzy:
Dąbrowska-Zielińska, K.
Kowalik, W.
Gruszczyńska, M.
Hościło, A.
Powiązania:
https://bibliotekanauki.pl/articles/129631.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
SPOT/VEGETATION
ERS-2/ATSR
NOAA AVHRR
vegetation index
ERS2/SAR
soil moisture
wskaźnik zieleni
ERS-2/SAR
wilgotność gleby
Opis:
The study has been carried out at the Biebrza Basin in Poland. The investigation aimed at finding the best vegetation index characterising different marshland habitats. The various indices were calculated on the basis of all considered spectral bands of low spatial resolution satellites as SPOT/VEGETATION, ERS-2/ATSR, and NOAA/AVHRR. The GEMI and EVI index calculated from SPOT/VEGETATION images was the best for distinguishing vegetation classes. The best correlation between LAI measured at the ground and the derived indices was with GEMI and EVI index. Soil moisture values calculated from ERS2/ SAR well characterised distinguished marshland humidity classes.
Biebrzański Park Narodowy został założony w 1993 roku w celu ochrony unikalnych walorów przyrodniczych bagiennej doliny rzeki Biebrzy. W wyniku panujących warunków wodnych oraz morfologii terenu na obszarze tym wykształcił się największy w Polsce ekosystem torfowisk niskich i wysokich. Na skutek zmian w użytkowaniu rolniczym oraz z powodu budowy kanałów odwadniających, ten unikalny naturalny ekosystem bagienny został zachwiany. Zmienione warunki wilgotnościowe doprowadziły do degradacji gleb torfowych i w konsekwencji do zmiany szaty roślinnej. Obecnie istnieje potrzeba monitorowania niekorzystnego dla środowiska procesu osuszania bagien, a jedynie możliwą do zastosowania na tak dużą skalę metodą, jest metoda teledetekcji. Badania skoncentrowano na obszarze zlokalizowanym w Basenie Środkowym Biebrzy, na którym do tej pory przeprowadzono wiele eksperymentów naukowych, i dla którego zgromadzono wiele informacji niezbędnych do realizacji niniejszego przedsięwzięcia. W opracowaniu uwzględnione zostały dane satelitarne i naziemne archiwalne pochodzące z lat 1995 i 1997 oraz dane otrzymane w trakcie trwania badań lat 2000–2002. Wykorzystano dane satelitarne otrzymywane w optycznym i mikrofalowym zakresie widma elektromagnetycznego. Z zakresu optycznego (Landsat ETM, ERS-2.ATSR, SPOT VEGETATION, NOAA/AVHRR) zostały wyznaczone wskaźniki roślinne charakteryzujące powierzchnię ze względu na stopień uwilgotnienia i fazę rozwoju roślin. Poprzez klasyfikację obszaru wyróżniono łąki na różnych rodzajach siedlisk. Klasyfikowane były zdjęcia wykonane przy użyciu skanerów Thematic Mapper (TM) i Enhanced Thematic Mapper (ETM+) pracujących na satelitach z serii Landsat oraz zdjęcia mikrofalowe wykonane przy użyciu urządzenia SAR umieszczonego na satelicie ERS-2. Przy klasyfikacji wykorzystano wyniki badań terenowych. Z danych mikrofalowych zarejestrowanych przez satelitę ERS-2 obliczono współczynnik wstecznego rozpraszania i wyprowadzono algorytmy wyznaczania wilgotności gleby. Wyznaczono również związek pomiędzy poszczególnymi klasami wilgotności gleby a wskaźnikami roślinnymi uzyskanymi z różnych satelitów oraz wyznaczono obszary, na których zaszły największe zmiany wilgotności. W wyniku przeprowadzonych analiz wybrano następujące wskaźniki roślinne: ARVI, EVI, GEMI, MI, NDVI, których wzory podane są poniżej: ARVI = ( NIR - BLUE ) / ( NIR + BLUE ) EVI = 2.0 * ( NIR - RED ) / ( 1 + NIR + 6 * RED - 7.5 * BLUE ) GEMI =⋅[η * ( 1 - 0.25η ) - ( RED - 0.125 )] / [ 1 - RED ], η = [ 2 * ( NIR2 - RED2 ) + 1.5 NIR + 0.5 RED ] / 9 NIR + RED + 0.5 ] NDVI = ( NIR - RED ) / ( NIR + RED ) MI = ( SWIR - RED ) / (SWIR + RED ) gdzie: ARVI – Atmospherically Resistant Vegetation Index, Kaufman i Tanre, 1992; EVI – Enhanced Vegetation Index, Liu i Huete, 1995; GEMI – Global Environment Monitoring Index, Pinty i Verstraete, 1992; MI –Medium Infrared Index, wyprowadzony przez autorów, 2002; NDVI – Normalized Difference Vegetation Index, powszechnie używany od dawna. Wskaźniki roślinne łączą dane teledetekcyjne z biofizycznymi charakterystykami powierzchni czynnej, a w szczególności z powierzchnią projekcyjną liści, akumulowaną radiacją w procesie fotosyntezy, biomasą, i gęstością pokrycia roślinnością. Istnieje duże zainteresowanie rozwijaniem i wprowadzaniem wciąż nowych indeksów ze względu na ich związek z wieloma cechami roślinnymi, a równocześnie nie czułych na osłabiający wpływ gleby i atmosfery. Pozostaje jednak nadal aktualne, jakie cechy roślin wpływają na wartość wskaźnika, dla jakich warunków dany indeks może być zastosowany, jak również z jaką dokładnością mogą być poszczególne parametry roślinne obliczane. Wskaźniki roślinne, ze względu na łatwość ich obliczania bez konieczności stosowania dodatkowych danych, znalazły zastosowanie w rolnictwie do prognozowania plonów, ustalania terminów nawodnień. Istotnym elementem pracy było znalezienie takich wskaźników roślinnych obliczanych ze zdjęć satelitarnych wykonanych w optycznym zakresie widma, które pozwoliłyby na dokładne szacowanie wskaźnika powierzchni projekcyjnej liści tzw. LAI. Wskaźnik ten jest niezbędny do szacowania wilgotności gleby ze zdjęć mikrofalowych, gdyż odzwierciedla szorstkość badanej powierzchni roślinnej. Analiza zmian wilgotności gleby umożliwiła wyznaczenie obszarów o zróżnicowanym uwilgotnieniu i opracowanie metody jej monitorowania na obszarach bagiennych. Najsilniejszą zależność otrzymano dla wskaźników EVI i GEMI obliczonych z danych satelitarnych SPOT VEGETATION (R2 = 0.81), najsłabszą dla wskaźnika GEMI obliczonego z danych NOAA/AVHRR (R2 = 0.41). Wyprowadzone na podstawie analizy statystycznej algorytmy o najwyższych korelacjach mogą być zastosowane do szacowania wskaźnika LAI dla roślinności bagiennej.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2003, 13b; 349-359
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biophysical Parameters Assessed from Microwaveand Optical Data
Autorzy:
Dąbrowska-Zielińska, K.
Budzyńska, M.
Kowalik, W.
Małek, I.
Gatkowska, M.
Bartold, M.
Turlej, K.
Powiązania:
https://bibliotekanauki.pl/articles/227329.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ENVISAT
ALOS
NOAA
LAI
biomass
heat fluxes
H/LE
soil moisture
Opis:
The study has been carried out at Biebrza Wetlands situated in the N-E part of Poland, a NATURA 2000 and Ramsar Convention test site in 2003-2009. It is one of the largest in Europe natural rich biotope with the large amount of unique species of flora and important zone for nesting and wintering for fauna. Data from microwave and optical satellite images and soil-vegetation ground measurements were analyzed to develop methods for monitoring and mapping biophysical parameters. Satellite data applied for the study included: ENVISAT.ASAR, ENVISAT.MERIS, ALOS.PALSAR, ALOS.AVNIR-2, and NOAA.AVHRR data. Optical images were used for classification of wetlands communities and calculation of vegetation index NDVI. Also, latent heat flux has been calculated using NOAA.AVHRR data and meteorological data. Microwave images acquired in different modes (ASAR IS2 and IS6, ALPSR.FBD) and polarizations (HH, HV, VV) were used for assessment and mapping of Leaf Area Index (LAI) and soil moisture (SM) for every habitat classified from optical images. Backscattering coefficient calculated from ALOS.PALSAR HV and ENVISAT.ASAR IS6 VV was applied for assessment of vegetation bio-parameters. Backscattering coefficient calculated from ALOS.PALSAR.FBD HH and ENVISAT.ASAR HH IS2 was used for SM assessment. The study was conducted in the framework of ESA PECS project No 98101 and ESA PI projects: C1P.7389 and AOALO.3742.
Źródło:
International Journal of Electronics and Telecommunications; 2012, 58, 2; 99-104
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies