Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bielecka, T." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Selection of clustering methods for wind turbines operational data
Dobór metod grupowania danych procesowych dla turbin wiatrowych
Autorzy:
Gibiec, M.
Barszcz, T.
Bielecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/327686.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka maszyn
turbina wiatrowa
eksploracja danych
grupowanie
machine diagnostics
wind turbine
data mining
clustering
Opis:
Quickly growing number of monitored wind turbines has changed the needs for monitoring and diagnostic algorithms. The data from hundreds of monitoring systems are transferred to the diagnostic centers, where the data should be analyzed. High cost of labor created the need for automated diagnostic methods. The first task in this wide discipline is classification of the data and detection of malfunction states. The paper investigates application of data mining methods for classification of operational data from wind turbines. It is shown, that combination of the agglomeration method with the C-means clustering yields very good results and can be used for automated diagnostics of wind farms.
Szybko rosnąca liczba monitorowanych turbin wiatrowych zmieniła potrzeby w zakresie algorytmów monitorowania diagnostyki. Obecnie dane z setek systemów monitorowania przesyłane są do centrów diagnostycznych, gdzie muszą zostać przeanalizowane. Wysokie koszty pracy ekspertów spowodowały potrzebę zautomatyzowania metod diagnostycznych. Pierwszym zadaniem stała się automatyczna klasyfikacja danych i wykrywanie stanów niesprawności. Artykuł przedstawia zastosowanie metod "data mining" do klasyfikacji danych procesowych z turbin wiatrowych. Pokazano, że połączenie metody aglomeracji danych z metodą K-means daje bardzo dobre wyniki i może być zastosowane do zautomatyzowanej diagnostyki farm wiatrowych.
Źródło:
Diagnostyka; 2010, 4(56); 37-42
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-destructive testing of wood – correlation of ultrasonic and stress wave test results in glued laminated timber members
Nieniszczące badania drewna – korelacja wyników badań metodą ultradźwiękową i metodą fali napięciowej dla drewna klejonego warstwowo
Autorzy:
Nowak, T.
Hamrol-Bielecka, K.
Jasienko, J.
Powiązania:
https://bibliotekanauki.pl/articles/9264.pdf
Data publikacji:
2015
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Źródło:
Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology; 2015, 92
1898-5912
Pojawia się w:
Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ART-2 artificial neural networks applications for classification of vibration signals and operational states of wind turbines for intelligent monitoring
Autorzy:
Barszcz, T.
Bielecki, A.
Wójcik, M
Bielecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/329678.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
wind turbines
monitoring
ART neural network
Opis:
In recent years wind energy is the fastest growing branch of the power generation industry. The largest cost for the wind turbine is its maintenance. A common technique to decrease this cost is a remote monitoring based on vibration analysis. Growing number of monitored turbines requires an automated way of support for diagnostic experts. As full fault detection and identification is still a very challenging task, it is necessary to prepare an “early warning” tool, which would focus the attention on cases which are potentially dangerous. There were several attempts to develop such tools, in most cases based on various classification methods. As the ART neural networks are capable to perform efficient classification and to recognize new states when necessary, they seems to be a proper tool for classification of vibration signals of bearing in gears in wind turbines. The verification of ART-2 networks efficiency in this task is the topic of this paper.
Źródło:
Diagnostyka; 2013, 14, 4; 21-26
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies