Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Balicka, Honorata" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
An influence of deep learning and the internet of things on directions of development of integrated financial systems supporting smart cities for green economy
Wpływ uczenia głębokiego I internetu rzeczy na kierunki rozwoju zintegrowanych systemów finansowych wspierających inteligentne miasta w warunkach ekologicznej gospodarki
Autorzy:
Balicka, Honorata
Powiązania:
https://bibliotekanauki.pl/articles/1944111.pdf
Data publikacji:
2020
Wydawca:
Sopocka Akademia Nauk Stosowanych
Tematy:
Financial Systems
Smart City
Green Economy
Deep Learning.
finanse
smart city
ekologiczna gospodarka
uczenie głębokie.
Opis:
Cyfryzacja to nie tylko kontynuacja status quo na wyższym poziomie technologicznym, ale również zmiana reguł konkurencyjności gospodarczej praktycznie wewszystkich sektorach gospodarki, w tym finansowym. Cyfrowa transformacja biznesowa to proces wykorzystujący technologie cyfrowe do wzmocnienia zdolności firmy w celu konstruowania nowych efektywnych modeli biznesowych. Możliwości zastosowania sztucznej inteligencji w przedsiębiorstwach większości branż zyskały duże zainteresowanie w światowych badaniach. Realizują je przede wszystkim znaczące ośrodki naukowe oraz firmy konsultingowe. Wg ekspertów z grupy Gartnera aż 87% menedżerów wyższego szczebla jest przekonanych, że cyfryzacja jest priorytetem, a 79% strategów korporacyjnych uważa, że cyfryzacja na nowo definiuje działalność przedsiębiorstw, tworząc dodatkowe możliwości generowania zysków. Celem pracy jest scharakteryzowanie kierunków rozwoju systemów finansowych, wspierających inteligentne miasta i ekologiczną gospodarkę, w zakresie wykorzystania nowoczesnych technologii informatycznych, opartych na Internecie Rzeczy i głębokich sztucznych sieciach neuronowych. Zdaniem Autorki wykorzystanie najnowszych osiągnięć sztucznej inteligencji w systemach finansowych, a w szczególności do rozwoju elektronicznych form rozliczeń, stanowi ogromny potencjał umożliwiający uniknięcie głębokiego kryzysu w związku z negatywnymi skutkami długotrwałej pandemii w gospodarce. Warto podkreślić, że istnieje luka w literaturze przedmiotu w tym zakresie, gdyż nie ma jasnych pomysłów, jak skutecznie wykorzystać sztuczną inteligencję w chmurze obliczeniowej do efektywnego wspomagania systemów finansowych w smat city przy uwzględnieniu zrównoważonego rozwoju gospodarczego. Z powyższych względów w artykule rozważa się strategię, jak należy zwiększyć rolę zintegrowanego systemu finansowego w inteligentnym mieście. Ponadto charakteryzuje się Internet Rzeczy w odniesieniu do zarządzania krytycznymi zasobami miasta. Po omówieniu inwestycji finansowych w ekologiczne i inteligentne technologie scharakteryzowano zagadnienia związane z głębokimi sieciami neuronowymi do predykcji i klasyfikacji w systemach finansowych. Przedstawiono również rozważania dotyczące szczególnego przypadku architektury głębokiego uczenia opartej na sztucznych sieciach neuronowych (ANN). Rekurencyjne ANN klasy LSTM zweryfikowano pod kątem inwestycji finansowych na giełdzie. Na zakończenie przedstawiono wnioski i planowane przyszłe prace.
Digitalization is not only a continuation of the status quo at a higher technological level, but is changing the rules of the game in virtually all sectors of the economy, including financial and business. Digital business transformation is the process of using digital technologies to strengthen a company's ability to create robust digital business models. The possibilities of applying digital technologies in enter- prises of individual industries have gained great interest in global research. They are implemented primarily by significant scientific centers and consulting companies. According to Gartner study, 87% of senior executives say digitalization is a priority, and 79% of corporate strategists believe that digitalization is redefining their business in a completely new way, creating additional opportunities to generate profit. The aim of the work is to characterize the directions of financial system development supporting smart cities and green economy in the field of using modern information technologies based on cloud computing and deep neural networks. According to the author, the use of modern information technologies, based on the Internet of Things and deep neural networks in financial systems, in particular for the development of electronic forms of settlements creates a great chance to avoid a crisis due to the development of the pandemic consequences. It is worth to underline that there is a gap in the literature on the subject in this respect. There are no clear ideas on how to apply artificial intelligence and cloud computing to strengthen the role of the financial systems in smart city subject to an efficient development of green economy. Therefore, we discuss integrated financial system in smart city. Besides, we describe Internet of Things for green management of critical city resources. After discussing financial investment in green and smart technologies, issues related to deep learning for prediction in financial systems are characterized. Considerations on the special case of deep learning architecture based on artificial neural networks (ANNs) are presented, too. The Long Short Term Memory ANNs are verified for stock market investment. Finally, conclusions and future work are presented.
Źródło:
Przestrzeń, Ekonomia, Społeczeństwo; 2020, 17/I; 77-102
2299-1263
2353-0987
Pojawia się w:
Przestrzeń, Ekonomia, Społeczeństwo
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Digital technologies in the accounting information system supporting decision-making processes
Autorzy:
Balicka, Honorata
Powiązania:
https://bibliotekanauki.pl/articles/27313266.pdf
Data publikacji:
2023
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
accounting
artificial intelligence
digital technologies
księgowość
sztuczna inteligencja
technologie cyfrowe
Opis:
Purpose: The aim of the article is to characterize the possibilities of improving the accounting information system supporting decision-making processes in the enterprise with the use of selected digital technologies with particular emphasis on artificial intelligence. Design/methodology/approach: Basic research methods include critical analysis of literature. Simulation models of the stock market game using deep learning were also used. In addition, intensive computational experiments were carried out to analyze the quality of the solutions, which were determined by the proposed deep learning methods using artificial neural networks based on short-term memory (LSTM). The research presented in this article was verified by simulating the possibility of using deep learning. Findings: The results exceeded the estimates described in the literature. The average error is estimated to be less than 3% when using the LSTM network. It should therefore be assumed that other deep learning paradigms will also be an effective tool in financial systems. The results of theoretical research and numerical experiments confirmed that the impact of selected digital technologies on the improvement of the accounting information system supporting decision-making processes is significant. Practical implications: The results are the basis for formulating recommendations regarding the possibility of using the analyzed digital technologies in the accounting information system, supporting decision-making processes in the enterprise. They can also serve as an example of the digital transformation of the enterprise accounting information system. Social implications: The obtained results indicate significant opportunities to improve the accounting information system supporting decision-making processes. This situation suggests the need to implement the latest achievements of digital technologies in the accounting information system for the effective collection and processing of a growing amount of data. A clear presentation, ongoing monitoring and precise prediction of future results are the basis for making effective decisions based on precise data analysis, and not based on intuition or experience of the decision maker. Originality/value: The authenticity of the study results stems from the clear ideas for the effective use of digital technologies, in particular, deep learning with the use of artificial neural networks in the cloud to improve the accounting information system, especially in the field of estimating forecasted values.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2023, 169; 57--89
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies