Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "semantic techniques" wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
Austempered Ductile Iron Manufacturing Data Acquisition Process with the Use of Semantic Techniques
Autorzy:
Wilk-Kołodziejczyk, D.
Kluska-Nawarecka, A. S.
Regulski, K.
Adrian, W.
Jaśkowiec, K.
Powiązania:
https://bibliotekanauki.pl/articles/355169.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
austempered ductile iron
thermal treatment
properties
process data
data integration
ontology
Opis:
The aim of this work was to propose a methodology supporting the task of collecting the comparative data on studies of the mechanical properties of ADI. Collecting of research data is an important step in the process of finding the optimum design solutions for newly made products - experimental data allow us properly calibrate the manufacturing process of ADI to let the final product achieve the required properties. Parameters of the ADI production process, i.e. the time and temperature of austenitising and austempering, as well as the alloying elements added to ductile iron affect the ADI properties. The design process can use research data collected, among others, from the Web. As stated in the article, the process of data acquisition can be supported by semantic technologies, including ontologies which are descriptive logic formalism.
Źródło:
Archives of Metallurgy and Materials; 2016, 61, 4; 2117-2122
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Formalization of Technological Knowledge in the Field of Metallurgy Using Document Classification Tools Supported with Semantic Techniques
Autorzy:
Regulski, K.
Powiązania:
https://bibliotekanauki.pl/articles/353849.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
application of information technology to the foundry industry
document classification
semantic techniques
knowledge formalization
text mining
Opis:
The process of knowledge formalization is an essential part of decision support systems development. Creating a technological knowledge base in the field of metallurgy encountered problems in acquisition and codifying reusable computer artifacts based on text documents. The aim of the work was to adapt the algorithms for classification of documents and to develop a method of semantic integration of a created repository. Author used artificial intelligence tools: latent semantic indexing, rough sets, association rules learning and ontologies as a tool for integration. The developed methodology allowed for the creation of semantic knowledge base on the basis of documents in natural language in the field of metallurgy.
Źródło:
Archives of Metallurgy and Materials; 2017, 62, 2A; 715-720
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Semantic web techniques for clinical topic detection in health care
Autorzy:
Raman, R.
Sahayaraj, Kishore Anthuvan
Soni, Mukesh
Nayak, Nihar Ranjan
Govindarajan, Ramya
Singh, Nikhil Kumar
Powiązania:
https://bibliotekanauki.pl/articles/38698068.pdf
Data publikacji:
2024
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
clinical text
frequent word set
feature selection
clustering
topic detection
time sequence
semantics
tekst kliniczny
częsty zestaw słów
wybór funkcji
grupowanie
wykrywanie tematu
sekwencja czasu
semantyka
Opis:
The scope of this paper is that it investigates and proposes a new clustering method thattakes into account the timing characteristics of frequently used feature words and thesemantic similarity of microblog short texts as well as designing and implementing mi-croblog topic detection and detection based on clustering results. The aim of the proposedresearch is to provide a new cluster overlap reduction method based on the divisions ofsemantic memberships to solve limited semantic expression and diversify short microblogcontents. First, by defining the time-series frequent word set of the microblog text, a fea-ture word selection method for hot topics is given; then, for the existence of initial clusters,according to the time-series recurring feature word set, to obtain the initial clustering ofthe microblog.
Źródło:
Computer Assisted Methods in Engineering and Science; 2024, 31, 2; 139-155
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying the relational modelling and knowledge-based techniques to the emitter database design
Autorzy:
Dudczyk, J.
Matuszewski, J.
Wnuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/309249.pdf
Data publikacji:
2003
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
bazy danych
sieć semantyczna
modelowanie relacyjne
emitter database
relational modelling
knowledge-based-techniques
semantic networks
confidence factor
Opis:
The appropriate emitter database is one of the most important elements in the present electronic intelligence (ELINT) system. This paper provides an overview of the relational modelling, which is used to construct the emitter database for current ELINT systems. The method described, delivers the entities' relational diagram that is independent from the manner of the data storage in further process of implementation. This approach ensures the integrity of the measured data. The process of final emitter identification is based on "the knowledge-based approach" which was implemented during the process of constructing the database.
Źródło:
Journal of Telecommunications and Information Technology; 2003, 1; 51-54
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentation of bone structures with the use of deep learning techniques
Autorzy:
Krawczyk, Zuzanna
Starzyński, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2128158.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
semantic segmentation
U-net
FCN
ResNet
computed tomography
technika deep learning
głęboka nauka
segmentacja semantyczna
tomografia komputerowa
Opis:
The paper is focused on automatic segmentation task of bone structures out of CT data series of pelvic region. The authors trained and compared four different models of deep neural networks (FCN, PSPNet, U-net and Segnet) to perform the segmentation task of three following classes: background, patient outline and bones. The mean and class-wise Intersection over Union (IoU), Dice coefficient and pixel accuracy measures were evaluated for each network outcome. In the initial phase all of the networks were trained for 10 epochs. The most exact segmentation results were obtained with the use of U-net model, with mean IoU value equal to 93.2%. The results where further outperformed with the U-net model modification with ResNet50 model used as the encoder, trained by 30 epochs, which obtained following result: mIoU measure – 96.92%, “bone” class IoU – 92.87%, mDice coefficient – 98.41%, mDice coefficient for “bone” – 96.31%, mAccuracy – 99.85% and Accuracy for “bone” class – 99.92%.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e136751, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentation of bone structures with the use of deep learning techniques
Autorzy:
Krawczyk, Zuzanna
Starzyński, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2173574.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
semantic segmentation
U-net
FCN
ResNet
computed tomography
technika deep learning
głęboka nauka
segmentacja semantyczna
tomografia komputerowa
Opis:
The paper is focused on automatic segmentation task of bone structures out of CT data series of pelvic region. The authors trained and compared four different models of deep neural networks (FCN, PSPNet, U-net and Segnet) to perform the segmentation task of three following classes: background, patient outline and bones. The mean and class-wise Intersection over Union (IoU), Dice coefficient and pixel accuracy measures were evaluated for each network outcome. In the initial phase all of the networks were trained for 10 epochs. The most exact segmentation results were obtained with the use of U-net model, with mean IoU value equal to 93.2%. The results where further outperformed with the U-net model modification with ResNet50 model used as the encoder, trained by 30 epochs, which obtained following result: mIoU measure – 96.92%, “bone” class IoU – 92.87%, mDice coefficient – 98.41%, mDice coefficient for “bone” – 96.31%, mAccuracy – 99.85% and Accuracy for “bone” class – 99.92%.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e136751
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies