Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "inteligencja obliczeniowa" wg kryterium: Wszystkie pola


Tytuł:
Computational intelligence based design of biomaterials
Autorzy:
Vinoth, Arulraj
Datta, Shubhabrata
Powiązania:
https://bibliotekanauki.pl/articles/29520060.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
biomaterial
design
modeling
optimization
computational intelligence
biomateriał
projekt
modelowanie
optymalizacja
Inteligencja obliczeniowa
Opis:
This paper presents an overview of the applications of computational intelligence techniques, viz. artificial neural networks, fuzzy inference systems, and genetic algorithms, for the design of biomaterials with improved performance. These techniques are basically used for developing data-driven models and for optimization. The paper introduces the domain of biomaterials and how they can be designed using computational intelligence techniques. Then a brief description of the tools is made, followed by the applications of the tools in various domains of biomaterials. The applications range in all classes of materials ranging from alloys to composites. There are examples of applications for the surface treatment of biomaterials, materials for drug delivery systems, materials for scaffolds and even in implant design. It is found the tools can be effectively used for designing new and improved biomaterials.
Źródło:
Computer Methods in Materials Science; 2022, 22, 4; 229-262
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimisation of MCTS player for The Lord of the Rings: The Card Game
Autorzy:
Godlewski, Konrad
Sawicki, Bartosz
Powiązania:
https://bibliotekanauki.pl/articles/2173569.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
computational intelligence
LoTR
Lord of the Rings
Monte Carlo Tree Search
inteligencja obliczeniowa
Władca Pierścieni
Opis:
The article presents research on the use of Monte-Carlo Tree Search (MCTS) methods to create an artificial player for the popular card game “The Lord of the Rings”. The game is characterized by complicated rules, multi-stage round construction, and a high level of randomness. The described study found that the best probability of a win is received for a strategy combining expert knowledge-based agents with MCTS agents at different decision stages. It is also beneficial to replace random playouts with playouts using expert knowledge. The results of the final experiments indicate that the relative effectiveness of the developed solution grows as the difficulty of the game increases.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e136752
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Covid-19: pandemic management in different parts of India
Autorzy:
Wilinski, Antoni
Sharma, Ravindra
Arti, M.K.
Powiązania:
https://bibliotekanauki.pl/articles/27313422.pdf
Data publikacji:
2023
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
COVID-19
pandemic
computational intelligence
healthcare
pandemic management
pandemia
inteligencja obliczeniowa
opieka zdrowotna
zarządzanie pandemią
Opis:
Purpose: Managing a pandemic in individual countries is a concern not only of governments but also of WHO and the entire international community. The pandemic knows no bounds. In this context, India is a special country - with a huge population and a very large diversity of cultural, geographic, economic, poverty levels, and pandemic management methods. In this work, we try to assess the sum of the impact of these factors on the state of the epidemic by creating a ranking of Indian states from the least to the most endangered. Design/methodology/approach: As a method of creating such a ranking, we take into account two very, in our opinion, objective variables - the number of deaths and the number of vaccinations per million inhabitants of the region. In order not to make the usually controversial ascribing of weights to these factors, we relate them to the selected reference region - here to the capital city - Delhi. We apply a logical principle - the more vaccinations, the better and the more deaths - the worse. Findings: The results are rather surprising. Many small regions are safe regions, such as Andaman, Tripura or Sikkim, many large or wealthy states are at the end of this ranking, such as Delhi, Maharashtra, Uttar Pradesh, Bihar, and Tamil Nadu. What was found in the course of the work? This will refer to analysis, discussion, or results. Originality/value: The method enables an indirect assessment of the quality of pandemic management in a given region of the country. It can be used for any country or even a group of countries or a continent. According to this criterion, the best state/region is intuitively the safest for residents. A small number of deaths and a large number of vaccinations may positively indicate the state of public health and good management of the fight against the pandemic by local and/or central authorities.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2023, 169; 707--723
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimisation of MCTS player for The Lord of the Rings: The Card Game
Autorzy:
Godlewski, Konrad
Sawicki, Bartosz
Powiązania:
https://bibliotekanauki.pl/articles/2128154.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
computational intelligence
LoTR
Lord of the Rings
Monte Carlo Tree Search
inteligencja obliczeniowa
Władca Pierścieni
Opis:
The article presents research on the use of Monte-Carlo Tree Search (MCTS) methods to create an artificial player for the popular card game “The Lord of the Rings”. The game is characterized by complicated rules, multi-stage round construction, and a high level of randomness. The described study found that the best probability of a win is received for a strategy combining expert knowledge-based agents with MCTS agents at different decision stages. It is also beneficial to replace random playouts with playouts using expert knowledge. The results of the final experiments indicate that the relative effectiveness of the developed solution grows as the difficulty of the game increases.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e136752, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Clustering and filtering of measurement data based on dynamic self-organizing neural networks
Grupowanie i filtracja danych pomiarowych z wykorzystaniem dynamicznych, samoorganizujących się sieci neuronowych
Autorzy:
Gorzałczany, M. B.
Rudziński, F.
Powiązania:
https://bibliotekanauki.pl/articles/153286.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
inteligencja obliczeniowa
samoorganizujące się sieci neuronowe
grupowanie
computational intelligence
self-organizing neural networks
clustering
filtering
measurement data
Opis:
The paper presents an application of dynamic self-organizing neural networks (introduced by the same authors) to clustering of complex, multidimensional measurement-type data using as an example the so-called Synthetic Control Chart Time Series available at WWW server of the Department of Information and Computer Science, the University of California at Irvine. Moreover, after deactivation of some of the mechanisms governing the operation of the proposed networks they become efficient tools for signal and data filtering. The filtering of Equiptemp measurement data set available from Time Series Library by means of the proposed networks is also briefly presented.
Artykuł prezentuje zastosowanie tzw. dynamicznych samoorganizujących się sieci neuronowych (zaproponowanych przez autorów tej pracy) do grupowania złożonych, wielowymiarowych danych pomiarowych na przykładzie zbioru danych Synthetic Control Chart Time Series dostępnego na serwerze WWW Uniwersytetu Kalifornijskiego w Irvine (Department of Information and Computer Science). Proponowane sieci, w trakcie procesu uczenia, są w stanie dzielić swoje łańcuchy neuronów na podłańcuchy, ponownie łączyć wybrane podłańcuchy ze sobą oraz dynamicznie zmieniać całkowitą liczbę neuronów sieci. Cechy te umożliwiają im jak najlepsze dopasowanie się do nieznanych z góry struktur "zakodowanych" w danych. Funkcjonowanie proponowanych sieci zilustrowano najpierw na przykładzie złożonego zbioru danych dwuwymiarowych typu dwóch spiral. Po wyłączeniu pewnych mechanizmów rządzących funkcjonowaniem proponowanych sieci stają się one również efektywnymi narzędziami filtracji sygnałów. Przykłady filtracji danych pomiarowych zawartych w zbiorze Equiptemp pochodzącym z tzw. Time Series Library są również przedstawione w artykule.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 12, 12; 1416-1419
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational intelligence in development of 3D printing and reverse engineering
Autorzy:
Rojek, Izabela
Mikołajewski, Dariusz
Nowak, Joanna
Szczepański, Zbigniew
Macko, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2173553.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
additive manufacturing
three-dimensional printing
computational intelligence
optimization
drukowanie przestrzenne
wytwarzanie przyrostowe
AM
druk trójwymiarowy
inteligencja obliczeniowa
optymalizacja
Opis:
Computational intelligence (CI) can adopt/optimize important principles in the workflow of 3D printing. This article aims to examine to what extent the current possibilities for using CI in the development of 3D printing and reverse engineering are being used, and where there are still reserves in this area. Methodology: A literature review is followed by own research on CI-based solutions. Results: Two ANNs solving the most common problems are presented. Conclusions: CI can effectively support 3D printing and reverse engineering especially during the transition to Industry 4.0. Wider implementation of CI solutions can accelerate and integrate the development of innovative technologies based on 3D scanning, 3D printing, and reverse engineering. Analyzing data, gathering experience, and transforming it into knowledge can be done faster and more efficiently, but requires a conscious application and proper targeting.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; e140016, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of computational intelligence methods in control and diagnosis of production processes
Zastosowanie metod inteligencji obliczeniowej do sterowania i diagnostyki procesów produkcyjnych
Autorzy:
Perzyk, M.
Kozłowski, J.
Zarzycki, K.
Powiązania:
https://bibliotekanauki.pl/articles/113057.pdf
Data publikacji:
2013
Wydawca:
STE GROUP
Tematy:
manufacturing
process control
fault diagnosis
data mining
computational intelligence
wytwarzanie
sterowanie procesem
diagnostyka usterek
eksploracja danych
inteligencja obliczeniowa
Opis:
This chapter presents actual and potential applications of advanced data-driven models in control and fault diagnosis of manufacturing processes. Types of process control are discussed and the role of the computational intelligence as well as other data mining methods in them is shown. The main findings of the present authors, based on results of the previous works, are presented. They include the methodologies of determination of relative significances of process parameters and evaluation of prediction capabilities of time-series modeling. Results of a new research, aimed at assessment of capabilities of learning systems to detect out-of-control patterns of points observed in SPC charts, are presented.
Niniejsze opracowanie przedstawia rzeczywiste i potencjalne zastosowania zaawansowanych modeli opartych na danych w sterowaniu i diagnostyce usterek procesów wytwarzania. Omówiono rodzaje sterowania procesem oraz pokazano rolę, jaką pełnią w nich metody inteligencji obliczeniowej i inne metody eksploracji danych. Zaprezentowano główne stwierdzenia, do jakich doszli autorzy na podstawie wyników wcześniejszych badań. Obejmują one metody określania istotności względnych parametrów procesu oraz ocenę zdolności predykcyjnych modelowania szeregów czasowych. Przedstawiono także wyniki nowych badań, mających na celu ocenę zdolności systemów uczących się do wykrywania układów punktów na kartach kontrolnych SSP, świadczących o rozregulowaniu procesu.
Źródło:
Systemy Wspomagania w Inżynierii Produkcji; 2013, 1 (3); 104-125
2391-9361
Pojawia się w:
Systemy Wspomagania w Inżynierii Produkcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Designing fuzzy rule-based controllers from data using particle swarm optimization
Projektowanie rozmytych regulatorów regułowych na bazie danych z wykorzystaniem tzw. optymalizacji rojowej
Autorzy:
Gorzałczany, M. B.
Głuszek, A.
Powiązania:
https://bibliotekanauki.pl/articles/153296.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
inteligencja obliczeniowa
regulatory rozmyte
systemy wieloagentowe
inteligencja rojowa
dane pomiarowe
computational intelligence
fuzzy controllers
multi-agent systems
swarm intelligence
measurement data
Opis:
The paper presents a hybrid combination of fuzzy rule-based systems and particle swarm optimization (PSO) approach - referred to as PSO fuzzy rule-based technique - for optimizing sets of fuzzy control rules synthesized from control data. The application of the proposed technique to a complex and non-linear problem of the control of backing up a truck to a loading dock is also presented in the paper.
Artykuł prezentuje hybrydowe połączenie rozmytych systemów regułowych z metodami tzw. optymalizacji rojowej w celu optymalizowania zestawów rozmytych reguł sterujących syntetyzowanych z danych opisujących procesy sterowania. Zatem, artykuł proponuje rozszerzenie tradycyjnego zestawu komponentów wykorzystywanych dotychczas w budowie systemów tzw. inteligencji obliczeniowej obejmującego sztuczne sieci neuronowe, systemy rozmyte, algorytmy ewolucyjne (przede wszystkim, algorytmy genetyczne) czy też tzw. zbiory przybliżone o nowe narzędzie przeszukiwania rozważanych przestrzeni rozwiązań. Najpierw sformułowany został problem budowy regulatorów, których funkcjonowanie opisywane jest przy pomocy zestawów reguł rozmytych, na bazie danych opisujących procesy sterowania. Następnie przedstawiono zarys procesu syntezy rozmytych reguł sterowania z wykorzystaniem metod tzw. optymalizacji rojowej. Z kolei, zaprezentowano zastosowanie proponowanego podejścia do złożonego i nieliniowego problemu sterowania cofaniem ciężarówki do rampy załadowczej. Przedstawiono uzyskaną bazę reguł regulatora rozmytego, kształty funkcji przynależności zbiorów rozmytych występujących w regułach sterowania oraz wybrane przykłady trajektorii ruchu ciężarówki ze sterowaniem rozmytym.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 12, 12; 1424-1426
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data mining methods for prediction of air pollution
Autorzy:
Siwek, K.
Osowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/330775.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
computational intelligence
feature selection
neural network
random forest
air pollution forecasting
inteligencja obliczeniowa
selekcja cech
sieć neuronowa
lasy losowe
zanieczyszczenie powietrza
Opis:
The paper discusses methods of data mining for prediction of air pollution. Two tasks in such a problem are important: generation and selection of the prognostic features, and the final prognostic system of the pollution for the next day. An advanced set of features, created on the basis of the atmospheric parameters, is proposed. This set is subject to analysis and selection of the most important features from the prediction point of view. Two methods of feature selection are compared. One applies a genetic algorithm (a global approach), and the other—a linear method of stepwise fit (a locally optimized approach). On the basis of such analysis, two sets of the most predictive features are selected. These sets take part in prediction of the atmospheric pollutants PM10, SO2, NO2 and O3. Two approaches to prediction are compared. In the first one, the features selected are directly applied to the random forest (RF), which forms an ensemble of decision trees. In the second case, intermediate predictors built on the basis of neural networks (the multilayer perceptron, the radial basis function and the support vector machine) are used. They create an ensemble integrated into the final prognosis. The paper shows that preselection of the most important features, cooperating with an ensemble of predictors, allows increasing the forecasting accuracy of atmospheric pollution in a significant way.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 2; 467-478
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graph-based generation of a meta-learning search space
Autorzy:
Jankowski, N.
Powiązania:
https://bibliotekanauki.pl/articles/330964.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
pozyskiwanie danych
maszyna ucząca się
inteligencja obliczeniowa
meta learning
data mining
learning machines
complexity of learning
complexity of learning machines
computational intelligence
Opis:
Meta-learning is becoming more and more important in current and future research concentrated around broadly defined data mining or computational intelligence. It can solve problems that cannot be solved by any single, specialized algorithm. The overall characteristic of each meta-learning algorithm mainly depends on two elements: the learning machine space and the supervisory procedure. The former restricts the space of all possible learning machines to a subspace to be browsed by a meta-learning algorithm. The latter determines the order of selected learning machines with a module responsible for machine complexity evaluation, organizes tests and performs analysis of results. In this article we present a framework for meta-learning search that can be seen as a method of sophisticated description and evaluation of functional search spaces of learning machine configurations used in meta-learning. Machine spaces will be defined by specially defined graphs where vertices are specialized machine configuration generators. By using such graphs the learning machine space may be modeled in a much more flexible way, depending on the characteristics of the problem considered and a priori knowledge. The presented method of search space description is used together with an advanced algorithm which orders test tasks according to their complexities.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 647-667
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measurement data in genetic fuzzy modelling of dynamic systems
Dane pomiarowe w genetyczno-rozmytym modelowaniu systemów dynamicznych
Autorzy:
Gorzałczany, M. B.
Rudziński, F.
Powiązania:
https://bibliotekanauki.pl/articles/153292.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
inteligencja obliczeniowa
systemy rozmyte
algorytmy genetyczne
systemy genetyczno-rozmyte
dane pomiarowe
computational intelligence
fuzzy systems
genetic algorithms
genetic fuzzy systems
measurement data
Opis:
The paper presents a genetic fuzzy rule-based approach to the modelling of complex dynamic systems and processes using measurement data that describe their behaviour. The application of the proposed technique to modelling an industrial gas furnace system (the so-called Box-Jenkins benchmark) using measurement data available from the repository at the University of Wisconsin at Madison (http://www.stat.wisc.edu/~reinsel/ bjr-data) is also presented in the paper.
Artykuł prezentuje podejście genetyczno-rozmyte do modelowania (z wykorzystaniem zestawów reguł rozmytych) złożonych, dynamicznych systemów i procesów na bazie danych pomiarowych opisujących ich zachowanie. Najpierw sformułowany został problem budowy modeli (w formie zestawów reguł rozmytych) systemów dynamicznych z wykorzystaniem danych opisujących ich zachowanie. Następnie przedstawiono proces syntezy reguł rozmytych z danych z wykorzystaniem zaproponowanego przez autorów zmodyfikowanego podejścia typu Pittsburgh z obszaru algorytmów genetycznych. Z kolei, przedstawiono zastosowanie proponowanej techniki do modelowania systemu przemysłowego pieca gazowego (tzw. benchmark Box'a-Jenkins'a) z wykorzystaniem danych pomiarowych dostępnych w repozytorium Uniwersytetu Wisconsin w Madison, USA (http://www.stat.wisc. edu/~reinsel/bjr-data). Uzyskany model, w formie zestawu reguł rozmytych, przetestowano w trybie pracy predyktora jednokrokowego oraz wielokrokowego (na pełnym horyzoncie symulacji). Dokonano również analizy zależności pomiędzy dokładnością a przejrzystością (mierzoną liczbą reguł) modelu oraz przetestowano model ze zredukowaną bazą reguł.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 12, 12; 1420-1423
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methods of Computational Intelligence in the Context of Quality Assurance in Foundry Products
Autorzy:
Rojek, G.
Regulski, K.
Wilk-Kołodziejczyk, D.
Powiązania:
https://bibliotekanauki.pl/articles/380386.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
application of information technology
foundry industry
quality management
casting defects
computational intelligence
artificial intelligence
zastosowanie technologii informatycznych
przemysł odlewniczy
zarządzanie jakością
wady odlewnicze
inteligencja obliczeniowa
sztuczna inteligencja
Opis:
One way to ensure the required technical characteristics of castings is the strict control of production parameters affecting the quality of the finished products. If the production process is improperly configured, the resulting defects in castings lead to huge losses. Therefore, from the point of view of economics, it is advisable to use the methods of computational intelligence in the field of quality assurance and adjustment of parameters of future production. At the same time, the development of knowledge in the field of metallurgy, aimed to raise the technical level and efficiency of the manufacture of foundry products, should be followed by the development of information systems to support production processes in order to improve their effectiveness and compliance with the increasingly more stringent requirements of ergonomics, occupational safety, environmental protection and quality. This article is a presentation of artificial intelligence methods used in practical applications related to quality assurance. The problem of control of the production process involves the use of tools such as the induction of decision trees, fuzzy logic, rough set theory, artificial neural networks or case-based reasoning.
Źródło:
Archives of Foundry Engineering; 2016, 16, 2; 11-16
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data-based fuzzy modelling of dynamic systems by means of evolution strategies
Rozmyte modelowanie systemów dynamicznych na bazie danych z wykorzystaniem strategii ewolucyjnych
Autorzy:
Gorzałczany, M. B.
Głuszek, A.
Powiązania:
https://bibliotekanauki.pl/articles/153300.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
inteligencja obliczeniowa
systemy rozmyte
strategie ewolucyjne
systemy rozmyte z wykorzystaniem strategii ewolucyjnych
dane pomiarowe
computational intelligence
fuzzy systems
evolution strategies
evolution-strategy fuzzy systems
measurement data
Opis:
The paper presents a hybrid approach (combining fuzzy rule-based systems and evolution strategies) to modelling of complex dynamic systems and processes using data that describe their behaviour. The application of the proposed approach to modelling and prediction of the Mackey-Glass chaotic time series is also presented in the paper. This time series - of complex dynamics - describes various physiological and technical control systems.
Artykuł prezentuje hybrydowe podejście - łączące rozmyte systemy regułowe z tzw. strategiami ewolucyjnymi - do modelowania złożonych, dynamicznych systemów i procesów z wykorzystaniem danych opisujących ich zachowanie. Strategie ewolucyjne stanowią jedną z czterech głównych klas algorytmów ewolucyjnych - obok najbardziej popularnych algorytmów genetycznych, programowania ewolucyjnego oraz programowania genetycznego. Szereg cech strategii ewolucyjnych - w tym samoadaptacja parametrów sterujących strategią ewolucji, co umożliwia dokładne lokalne dostrajanie się algorytmu - powoduje, że są one interesującym narzędziem szczególnie w zagadnieniach optymalizacji z ciągłymi parametrami. Stąd też mogą być efektywnie wykorzystywane w budowie rozmytych regułowych modeli systemów oraz algorytmów sterowania na bazie danych. W artykule przedstawiono zastosowanie proponowanego podejścia do modelowania i predykcji tzw. chaotycznego szeregu czasowego Mackey-Glass'a. Szereg ten - o złożonej dynamice - opisuje różnorodne fizjologiczne i techniczne systemy sterowania. Przedstawiono uzyskaną bazę reguł modelu rozmytego, kształty funkcji przynależności zbiorów rozmytych w nim występujących oraz porównanie odpowiedzi modelu z danymi rzeczywistymi.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 12, 12; 1427-1429
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New frontiers of analysis, interpretation and classification of biomedical signals: a computational intelligence framework
Autorzy:
Gacek, A.
Powiązania:
https://bibliotekanauki.pl/articles/333497.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
sygnał EKG
inteligencja obliczeniowa
zbiory rozmyte
granulki informacji
ziarnista informatyka
interpretacja
klasyfikacja
współdziałanie
ECG signals
computational intelligence
neurocomputing
fuzzy sets
information granules
granular computing
interpretation
classification
interpretability
Opis:
The methods of Computational Intelligence (CI) including a framework of Granular Computing, open promising research avenues in the realm of processing, analysis and interpretation of biomedical signals. Similarly, they augment the existing plethora of "classic" techniques of signal processing. CI comes as a highly synergistic environment in which learning abilities, knowledge representation, and global optimization mechanisms and this essential feature is of paramount interest when processing biomedical signals. We discuss the main technologies of Computational Intelligence (namely, neural networks, fuzzy sets, and evolutionary optimization), identify their focal points and elaborate on possible limitations, and stress an overall synergistic character, which ultimately gives rise to the highly symbiotic CI environment. The direct impact of the CI technology on ECG signal processing and classification is studied with a discussion on the main directions present in the literature. The design of information granules is elaborated on; their design realized on a basis of numeric data as well as pieces of domain knowledge is considered. Examples of the CI-based ECG signal processing problems are presented. We show how the concepts and algorithms of CI augment the existing classification methods used so far in the domain of ECG signal processing. A detailed construction of granular prototypes of ECG signals being more in rapport with the diversity of signals analyzed is discussed as well. ECG signals, Computational Intelligence, neurocomputing, fuzzy sets, information granules, Granular Computing, interpretation, classification, interpretability.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 23-36
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research of the efficiency of the reach of fire services to accidents in the City of Kocaeli on the basis of statistical data for the years 2013-2020
Badanie skuteczności dotarcia służb pożarniczychdo wypadków w Kocaeli̇na podstawie danych statystycznych za lata 2013-2020
Autorzy:
Namli, Ömer Bora
Tyburek, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/41205961.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
testing fire brigade statistics
WEKA
fire brigade effectiveness
response time
computational intelligence
computational model
testowanie statystyk straży pożarnej
efektywności straży pożarnej
czas reakcji
inteligencja obliczeniowa
model obliczeniowy
Opis:
We use different methods to evalulate performance of our works, and always look for better method to do this. One of the most available methods to measure performance is using statistical datas. To do this, we have to be sure about our datas are sufficient or not and how much we can trust these data sets to measure performance. In this study we will test statistical data sets of Kocaeli Fire Brigade by using WEKA and its algorithms.
W badaniach użyto różnych metod ocen wyników prowadzonych badań poszukując jednocześnie lepszejmetody analizy. Jedną z najbardziej dostępnych metod pomiaru wydajności jest wykorzystanie danych statystycznych. Aby to zrobić, należy mieć pewność, czy analizowne dane są wystarczające, oraz w jakim spotniu możena ufać zbiorom danych w celu pomiaru wydajności. W tym badaniu przetestowano zestaw danych statystycznych Straży Pożarnej Kocaeli za pomocą WEKA i jej algorytmów klasyfikacyjnych.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2022, 14, 3; 5-12
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies