Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "gas shale" wg kryterium: Wszystkie pola


Tytuł:
Lower Paleozoic oil and gas shale in the Baltic-Podlasie-Lublin Basin (central and eastern Europe) - a review
Autorzy:
Poprawa, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/2060266.pdf
Data publikacji:
2020
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Baltic-Podlasie-Lublin Basin
lower Paleozoic
shale oil
shale gas
reservoir characteristics
Opis:
In the Baltic-Podlasie-Lublin Basin, four potential lower Paleozoic shale reservoirs are identified: the Piaśnica, Sasino and Jantar formations, as well as the Mingajny shale. These units were diachronously deposited during the starved stages of Caledonian foredeep basin development, in the course of rising or high eustatic sea level. Across most of the basin, the shale formations analysed are saturated with light oil and condensate, and they are buried to depths of 2300-3500 m. The shale reservoirs reach the wet gas window at burial depths of 2800-4000 m, while dry gas accumulations occur at depths exceeding 3500-5000 m, except in the Biłgoraj-Narol Zone. The shale analysed might be generally classified as a moderate to low quality, and locally high quality, unconventional reservoir. Within the shale net pay zones, the average TOC content is 2-5 wt.% TOC. The exceptions are the Piaśnica Formation, for which this is 5-12 wt.%, and the Mingajny shale, which is TOC-lean (1.4-1.7 wt.%). The thickness of the shale net pay intervals in the most favourable locations, mainly on the Łeba Elevation, generally reaches 20 m, and locally exceeds 35 m. The shale reservoirs are saturated with hydrocarbons of good quality. Their permeability is low to moderate, often in the range of 150-200 mD, while total porosity average per borehole is commonly exceeds 6 %, reaching up to 10% at maximum, which might be considered as moderate to good. The clay minerals content is moderate to high (30-50%), and geomechanical characteristics of the shale formations are intermediate between brittle and ductile. No overpressure occurs in the basin, except for a dry gas zone in the SW Baltic Basin. In the Biłgoraj-Narol Zone, and to a lesser degree also in the Lublin region, pronounced tectonic deformation significantly limits shale gas/oil potential. Among 66 exploration boreholes drilled in the basin so far, only 5 were lateral boreholes with representative production test results. Hydrocarbon flow from the best boreholes was low to moderate, equal to 11.2 to 15.6 thousand m3/day for gas, and 157 bbl/day (~21.4 ton/day) for oil. There is, however, high potential to improve production flow rates, connected with the fracturing of two net pay intervals at one time, as well as with significant technological progress in the exploitation of shale basins during the last 5 years. Commercially viable production might be achieved for a single borehole with estimated ultimate recovery exceeding 30-50 thousand tons of oil, or 60-90 million m3 of gas.
Źródło:
Geological Quarterly; 2020, 64, 3; 515--566
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Shale gas development: managing economic transitions
Autorzy:
Jackson, R.
Powiązania:
https://bibliotekanauki.pl/articles/298994.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
shale gas
Opis:
Shifts in populations and economic structure are as old as population settlements themselves. As technologies change and economies adapt, regional comparative advantages also evolve. Among the most consequential of recently developed new technologies is horizontal drilling, which has opened vast regions of the world to the extraction, development,and use of low-cost energy from shale gas. Economic transitions and structural change are inevitable. The challenge for regional economists, policymakers, and economic developers lies in the identifying and managing these transitions in ways that maximize benefits and minimize the costs that accompany them. Complicating this challenge is the recognition that the geographic distributions of costs and benefits of economic development often do not coincide. This spatial mismatch of costs and benefits has been prominent historically in regional resource boom and bust cycles, many of which have been fed specifically by energy resources. The resources of energy rich regions have often been exploited in ways that provide short- term regional economic benefits and disruption, longer-term economic development often accompanied by environmental and physical infrastructural degradation. Recognizing that we are entering the early stages of one of the most substantial resource based shifts in economic structure in the history of energy resource development, we have the opportunity and the obligation to learn from successes and failures ofprevious economic transition management efforts, and to design strategies that will maximize the benefits and minimize the negative consequences of shale gas development. This contribution identifies and elaborates upon four critical dimensions of the transition management challenge. The first dimension includes the economic and environmental aspects of the extraction activities including drilling, materials assembly and usage including employment, income, capital equipment, and consumables, both manufactured and natural. The second dimension identifies the negative externalities of impacts on off-site physical infrastructure, with a special emphasis on transport infrastructure. In attempting to minimize negative consequences, programs should be developed to leave affected areas no worse off, at worst, and better off if possible. The road network involved in support drilling can extend well beyond the obvious transport arteries, even to jurisdictions that are not direct beneficiaries of severance taxes or impacts fees. The third dimension centers on economic structural changes related to upstream and downstream activities in the production and supply chains, and the fourth dimension concerns the roles of and impacts upon social and institutional structures.
Źródło:
AGH Drilling, Oil, Gas; 2013, 30, 1; 317-318
2299-4157
2300-7052
Pojawia się w:
AGH Drilling, Oil, Gas
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Challenges to the Development of Unconventional Natural Gas – The Case of Shale Gas
Autorzy:
Le, Minh Thong
Tran, Van Hiep
Do, Huu Tung
Powiązania:
https://bibliotekanauki.pl/articles/27323227.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
unconventional gas
shale gas
challenge
gaz niekonwencjonalny
gaz
wyzwania
Opis:
The world is undergoing a radical transition to a low-carbon economy and natural gas is considered an important bridge in the transition of energy in the world. The potential for natural gas, especially unconventional gas, is very large, which will significantly affect the future energy structure in all regions of the world. However, the conditions for developing these resources are different between regions and countries. The development of unconventional gas is now facing many challenges, even opposition because the problem of extracting unconventional gas is very complex and the total impact is unknown. Therefore, at present, the expansion of unconventional gas remains a question for countries that possess and desire to exploit these resources. This article will analyze the opportunity and challenges of unconventional gas relying on the development of shale gas in recently.
Źródło:
Inżynieria Mineralna; 2023, 2; 113--120
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Drilling mud for shale gas drilling
Autorzy:
Kędzierski, M.
Wysocki, S.
Wiśniowski, R.
Uliasz, M.
Zima, G.
Powiązania:
https://bibliotekanauki.pl/articles/298741.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
drilling mud
shale gas drilling
hydration inhibitors
Opis:
The selection of the relevant components the drilling of 5mud can reduce the occurrence of negative physical-chemical phenomena observed between shales and drilling mud. The purpose of laboratory examination was to estimate the impact of different polymer inhibitors for hydration of clays and shales. A laboratory test were performed in order to estimate the concentration of polymer inhibitors in preventing the phenomena taking place in contact with the shale rocks – drilling mud. Also, research the influence a drilling fl uids containing different kinds of hydration inhibitors on swelling and clays and shales dispersion.
Źródło:
AGH Drilling, Oil, Gas; 2015, 32, 3; 503-516
2299-4157
2300-7052
Pojawia się w:
AGH Drilling, Oil, Gas
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Polish shale gas deposits in relation to selected shale gas prospective areas of Central and Eastern Europe
Autorzy:
Karcz, P.
Janas, M.
Dyrka, I.
Powiązania:
https://bibliotekanauki.pl/articles/2075024.pdf
Data publikacji:
2013
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Europe
shale gas
shale oil
sedimentary basins
unconventional hydrocarbons
shale gas potential
Europa
gaz łupkowy
olej łupkowy
baseny sedymentacyjne
niekonwencjonalne węglowodory
potencjał gazu łupkowego
Opis:
This paper describes a regional overview of selected Central and Eastern European sedimentary basins which hold the unconventional potential for shale gas and shale oil exploration that have attracted interest in the last few years. Organic-rich fine-grained rocks like black and dark-grey shales, mudstones and claystones with varying ages from Cambrian to Miocene are distributed very irregularly across Europe. A long- -lasting, dynamic geological evolution and continuous reconstruction of the European continent resulted in the formation of many sedimentary basins. In some basins, biogeochemical conditions favoured preservation of accumulated organic-rich deposits and led to the generation of hydrocarbons after burial and reaching appropriate maturity levels. Even though shale gas and shale oil exploration in Europe is still in its infancy, shale formations were analyzed before as the source rocks in conventional petroleum systems. Parameters that were used to describe source rocks e.g.: total organic carbon, maturity, thickness, depth of occurrence and areal extent, can indicate preliminary potential for shale gas exploration and allow estimating first resource values. Currently the most intense shale gas exploration takes place in Poland where over 42 wells have been drilled and over 100 concessions for unconventional hydrocarbon exploration have been granted. Upper Ordovician and lower Silurian shales at the East European Craton (Baltic, Lublin and Podlasie basins) are the major targets for unconventional exploration in Poland. In Central and Eastern Europe, evaluation of the unconventional potential of gas-bearing shale formations is carried out also in Ukraine, Lithuania, Austria, Czech Republic, Hungary, Romania, Bulgaria, Moldova and the European sector of Turkey. Despite the fact that each shale rock differs from another by geochemical, petrographical, petrophysical, mechanical and other parameters, some similarities can be seen such as marine type of depositional environment with the predominance of type II kerogen or specific organic matter content. Recoverable resources of shale gas throughout Europe are believed to be as large as 17.67 trillion m3 (624 Tcf) and Poland, Ukraine, France with United Kingdom are thought to have the greatest resources.
Źródło:
Przegląd Geologiczny; 2013, 61, 11-1; 608--620
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Carbon dioxide sequestration during shale gas recovery
Autorzy:
Rogala, A.
Ksiezniak, K.
Krzysiek, J.
Hupka, J.
Powiązania:
https://bibliotekanauki.pl/articles/110643.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
shale gas
fracturing
unconventional gas resources
CO2 fracturing
Opis:
This paper presents literature on theoretical and practical aspects of gas production from shale using carbon dioxide fracturing. Development of technical and environmental aspects of carbon dioxide fracturing technologies is also considered. Patents applicable to carbon dioxide fracturing are reviewed. In this work experiments were also conducted to verify possibility of carbon dioxide sequestration in the shale gas reservoirs. Carbon dioxide and methane (CH4) storage capacity was measured as Langmuir volumes. The adsorption capacities depend on content of organic matter in the shale rocks and pressure. The obtained results indicate that developing of carbon dioxide fracturing is reasonable.
Źródło:
Physicochemical Problems of Mineral Processing; 2014, 50, 2; 681-692
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feasibility analysis of groundwater abstraction for gas shale fracturing in the Lublin Basin (Eastern Poland)
Ocena możliwości poboru wód podziemnych do szczelinowania łupków gazonośnych w Basenie Lubelskim (wschodnia Polska)
Autorzy:
Duda, R.
Macuda, J.
Powiązania:
https://bibliotekanauki.pl/articles/963985.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
groundwater
water supply
hydraulic fracturing
water-bearing capacity
specific capacity
Lublin Cretaceous
Lublin Basin
shale gas
wody podziemne
zaopatrzenie w wodę
szczelinowanie skał
wodonośność
wydajność jednostkowa
kreda lubelska
basen lubelski
gaz łupkowy
Opis:
Natural gas extraction from shale rock necessitates hydraulic fracturing of rocks, which involves large amounts of fracture fluids made of 90.5% of water. The authors focus on feasibility of groundwater abstraction for the purpose of applying fracture fluids in wells of the Lublin Basin – area of perspective unconventional gas exploitation from the Ordovician and the Silurian shales. These data refer to the expected specific capacity of wells abstracting groundwater from main useful aquifers. Specific capacity of a well (q) belongs to high-certainty empirical parameters, characterizing water-bearing capacity of rocks at a regional scale. The spatial evaluation of q was based on respective data coming from 7 sheets of the Hydrogeological Map of Poland (scale 1:200,000) covering research area. Specific capacity q was calculated for wells abstracting water from the Upper Cretaceous, Tertiary and Quaternary aquifers in areas presented on particular sheets of the map. Authors determined the variability distribution and the cumulative probability plots of q values, indicating a range which corresponded to a sum of standard deviation (SD) above and below median (X–), i.e. X– ± 1SD. On the total the interval included 68.2% of data. The results reveal that 0.6 ≤ q ≤ 40 m3h–1 per 1 meter of drawdown for the Upper Cretaceous rocks in the eastern part of the area, and 1.1 ≤ q ≤ 110 m3h–1 per 1 meter in the western part, being a result of more intense fracturing and fissuring. Owing to the scarcity of data, q values of wells screened at the Tertiary and Quaternary aquifers are given jointly for the whole area: 0.8 ≤ q ≤ 20 and 1.0 ≤ q ≤ 10 m3h–1 per 1 meter, respectively. The obtained specific capacities are high. When the wells are properly designed, their discharges may reach about ca. 100 m3h–1.
Eksploatacja gazu ziemnego ze skał łupkowych wiąże się z wykonaniem w każdym poziomym odcinku otworu wielu zabiegów hydraulicznego szczelinowania skał. Zabiegi te realizowane są przy wykorzystaniu dużych ilości cieczy szczelinujących, które w 90.5% składają się z wody, 9.0% piasku właściwych parametrów technologicznych cieczy. Zapotrzebowanie na wodę do szczelinowania wzrasta wraz ze zwiększeniem zwięzłości i głębokości zalegania łupków gazonośnych. W związku z tym właściciele koncesji na eksploatację gazu ze skał łupkowych oczekują informacji o możliwościach poboru wód podziemnych w celu szczelinowania. W pracy przedstawiono ocenę realnych możliwości poboru wód podziemnych do przygotowania cieczy szczelinujących dla otworów eksploatacyjnych gazu niekonwencjonalnego w obszarze basenu lubelskiego, będącego rejonem perspektywicznej eksploatacji gazu z łupków ordowiku i syluru (dolny paleozoik). Możliwości poboru wody zbadano na podstawie oczekiwanych wydajności jednostkowych studni ujmujących wody głównego użytkowego poziomu wodonośnego (GUPW) w rejonie badań. GUPW na przeważającej części tego obszaru związany jest ze skałami górnej kredy – spękanymi marglami, kredą, opokami, wapieniami i gezami, a także utworami czwartorzędu i trzeciorzędu. Znajomość wartości wydatku jednostkowego umożliwia zaprojektowanie ujęcia stosownie do określonych potrzeb. Witczak et al. (1999) proponują przyjęcie wydatku jednostkowego studni (q), jako obiektywnej danej empirycznej cechującej się wysokim wskaźnikiem pewności, w celu charakterystyki wodonośności poziomów wodonośnych w skali regionalnej. Przestrzenną ocenę wartości q oparto na danych zestawionych w 7 arkuszach Mapy hydrogeologicznej Polski w skali 1:200,000 (MHP). Dane dotyczyły q uzyskiwanych przy określonych maksymalnych depresjach poziomu wody. Obliczono q studni ujmujących wodę z GUPW w formacjach kredy górnej, trzeciorzędu i czwartorzędu, w granicach obszarów arkuszy MHP lub ich części znajdujących się w zasięgu obszaru badań (Fig. 1). Zanalizowano rozkłady zmienności i skumulowanej gęstości prawdopodobieństwa w celu uzyskania odpowiednich zakresów zmienności wartości q studni ujmujących wodę z badanych trzech formacji litostratygraficznych (Fig. 2, 3). Wyróżniono na wykresach zakres równy sumie jednego odchylenia standardowego (SD) powyżej i poniżej wartości mediany (X–), czyli X– ± 1SD. W tym przedziale zawiera się po 34.1% danych o wartościach odpowiednio: większych i mniejszych od mediany; łącznie przedział zawiera 68.2% danych. Na będących źródłem danych arkuszach MHP obejmujących obszar badań, ilość danych dotyczących studni ujmujących wodę z utworów czwartorzędu i trzeciorzędu zazwyczaj jest mniejsza niż 30. Wykonano więc zestawienie q także dla danych skumulowanych w odniesieniu do poszczególnych poziomów litostratygraficznych (Fig. 3b). Uzyskane wyniki w odniesieniu do skał kredy górnej wskazują, że analizowany obszar dzieli się na bardziej wodonośną część położoną na zachód od rzeki Wieprz, tj. w granicach arkuszy „Łuków”, „Lublin”, „Rzeszów” oraz słabiej wodonośną część położoną na wschód od tej rzeki, czyli w obszarach arkuszy „Włodawa”, „Chełm” i „Tomaszów Lubelski”. W zakresie X– ± 1SD w strefach występowania margli ilastych i kredy piszącej (część wschodnia obszaru) q zawierają się w przedziale 0.6 ≤ q ≤ 40 m3h–1 na 1 m depresji. W rejonach występowania opok, gez, margli i wapieni (część zachodnia) q jest w przedziale 1.1 ≤ q ≤ 110 m3h–1 na 1 m. Wartości q studni zafiltrowanych w utworach trzeciorzędu i czwartorzędu, za względu na małą ilość danych analizowano łącznie dla całego obszaru badań i stwierdzono, że zawierają się w przedziale X– ± 1SD odpowiednio 0.8 ≤ q ≤ 20 m3h–1 na 1m oraz 1.0 ≤ q ≤ 10 m3h–1 na 1m. Oprócz zmienności litologicznej, rozkład zmienności q w skali regionalnej w danym poziomie litostratygraficznym ma charakter lognormalny. Projektując studnie ujmujące wodę w obszarze badań z utworów kredy górnej zaleca się przyjmowanie wartości dolnej granicy przedziału zmienności X– ± 1SD zestawionych w Tabeli 1. Projektując ujęcia wody z utworów trzeciorzędu lub czwartorzędu, z uwagi na małą liczbę danych dotyczących tych poziomów w zasięgach arkuszy bedących źródłem danych, zaleca się przyjmowanie wartości dolnej granicy przedziału zmienności określonego dla danych połączonych ze wszystkich arkuszy (Tabela 1). Obliczenie przewidywanej wielkości poboru wód podziemnych pojedynczą studnią w granicach koncesji na eksploatację gazu łupkowego w Basenie Lubelskim można wykonywać na podstawie wartości q przedstawionych w pracy. Stwierdzone w wyniku badań wartości q są wysokie i gwarantują, przy prawidłowym zaprojektowaniu lokalizacji i budowy studni, uzyskiwanie wydajności od kilkudziesięciu do ponad 100 m3h–1 wody.
Źródło:
Archives of Mining Sciences; 2015, 60, 1; 303-312
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-aqueous fracturing technologies for shale gas recovery
Autorzy:
Rogala, A.
Krzysiek, J.
Bernaciak, M.
Hupka, J.
Powiązania:
https://bibliotekanauki.pl/articles/109430.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
shale gas
hydraulic fracturing
unconventional gas resources
explosive fracturing
Opis:
Fracturing technologies for shale gas production were developed mainly in the USA and are currently being adapted to geological conditions and environmental requirements in other countries. This paper presents literature on theoretical and practical aspects of gas production from shale with the empha-sis placed on alternatives to hydraulic fracturing. Technical and environmental aspects of non-aqueous fracturing technologies are also considered.
Źródło:
Physicochemical Problems of Mineral Processing; 2013, 49, 1; 313-322
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Well testing in shale gas reservoir - new idea
Autorzy:
Rybicki, C.
Powiązania:
https://bibliotekanauki.pl/articles/299175.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
shale gas
micropores
mezopores
nanopores
kerogen
bitumen
capillary condensation
buildup test
drawdown test
injection/falloff tests
Langmuir isotherm
Opis:
Generally hydrocarbons reservoirs can be divided into conventional reservoirs and unconventional reservoirs. Conventional reservoirs belong these reservoirs which can be used directly after the discovering process. Unconventional reservoirs - reservoirs which after the discovery process have to be prepared to be effective. Unconventional gas resources are targets for development in order to contribute to a national energy mix. Better recognition of the unconventional gas reservoirs allow us to obtain good results after discovering them. The main subject of this paper is giving some details about the testing methods of unconventional reservoirs and their properties and characteristics.
Źródło:
AGH Drilling, Oil, Gas; 2014, 31, 3; 441-453
2299-4157
2300-7052
Pojawia się w:
AGH Drilling, Oil, Gas
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of liquid-nitrogen freezing of gas-bearing shale rocks on their compressive strength
Autorzy:
Borek, Kinga
Powiązania:
https://bibliotekanauki.pl/articles/127596.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Mineralogiczne
Tematy:
hydraulic fracturing
black shales
freezing
compressive strength
modelling
Opis:
Any definable relation between falling temperature and the compressive strength of shale rocks should provide a useful predictive tool aiding optimization of the results of hydraulic fracturing. In this research, an automeasuring hydraulic press, a thermo-camera and the Fluent ANSYS software were used. The results of laboratory simulations, and the effects of experiments conducted on shale rocks to determine permanent changes in compressive strength, are presented. As both frozen rocks and rocks returned to room temperature show diminished compressive strength. It is suggested that prior freezing of rocks can increase the efficiency of fracturing.
Źródło:
Mineralogia; 2018, 49, 1/4; 7-16
1899-8291
1899-8526
Pojawia się w:
Mineralogia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of liquid waste streams from shale gas development
Autorzy:
Ziemkiewicz, P. F.
Powiązania:
https://bibliotekanauki.pl/articles/299245.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
liquid waste
shale gas
Opis:
Hydraulic fracturing has been practiced for over thirty years to improve effective porosity and stimulate oil and gas production. In the Appalachian Basin it has been used with horizontal drilling since 2008 to extract methane and natural gas liquids from source rock such as the Marcellus Formation. Hydraulic fracturing generates large volumes of waste water known as flowback: about 3,800 m3/well. Literature regarding the chemical composition of this waste stream is limited. This study examined injected hydraulic fracturing fluid from two wells and flow- back from four hydraulically fractured wells. Wells were sampled at various times during the flowback cycle and in sections of the basin known to produce either wet or dry gas, the former producing higher volumes of natural gas liquids. Concentrations were compared to available literature values and to drinking water standards as a basis for determining which parameters might compromise nearby, domestic wells in the event of an accidental release. Measured parameters included three classes: organic, inorganic ions and radioactive isotopes. Concentrations of all three classes of contaminants tended to increase during the flowback cycle. Organic contaminants including BTEX were substantially higher in the wet gas well. Radioactive isotopes, particularly alpha, beta, radium 226 and radium 228 increased during flowback. All contaminants were found in much higher concentrations in flowback water than in injected hydraulic fracturing fluids suggesting that the bulk of contaminants originate in the Marcellus formation rather than in the injected hydraulic fracturing fluids. Primary and secondary drinking water standards for all classes of contaminants were generally exceeded in flowback water. In addition to summarizing the chemical composition of flowback water, the presentation recommends practices for controlling the risk of environmental exposure.
Źródło:
AGH Drilling, Oil, Gas; 2013, 30, 1; 297-310
2299-4157
2300-7052
Pojawia się w:
AGH Drilling, Oil, Gas
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Carbon dioxide geosequestration method coupled with shale gas recovery
Autorzy:
Niezgoda, T.
Małek, E.
Miedzińska, D.
Powiązania:
https://bibliotekanauki.pl/articles/298651.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
shale gas
carbon dioxide
geosequestration
Opis:
Shale gas in the United States over the past decade, and interest has spread to potential gas shales in Canada, Europe, Asia, and Australia. One analyst expects shale gas to supply as much as half the natural gas production in North America by 2020. Carbon dioxide capture and storage (CCS) is a set of technologies for the capture of CO2 from its anthropogenic point sources, its transport to a storage location, and its geosequestration. This is only one, though very important, option in a portfolio of actions to fight the increase of atmospheric CO2 concentration and to mitigate climate change, while at the same time allowing for the continued use of fossil fuels. Deployment of CCS technologies is expected to be limited in the next 5-10 years, but to contribute significantly to the reduction of CO2 emissions 20 years from now. Capture of CO2 using existing separation techniques can be applied to large point sources, i.e. power plants or industrial plants; CO2 can be easily transported over large distances using pipelines and ships; finally CO2 can be permanently stored in suitable deep geological formations, namely deep saline aquifers, oil or gas reservoirs, and unmineable coal seams, or it can be fixed in carbonates. The paper deals with the innovative method of carbon dioxide storage coupled with gas shale fracturing and methane recovery developed in the Military University of Technology. It allows to effectively mine the shale gas and to store carbon dioxide in shale rock. It must be noticed that CO2 pollution is a very important problem in Poland, because of European Union CO2 limits. Also carbon dioxide thermodynamic process of decompression numerical calculation, which simulates the injection of the cold liquid gas into the shale formation (high temperature and pressure conditions) and its influence on shale rock fracturing as well as initial experimental verification of the method was presented in the paper.
Źródło:
AGH Drilling, Oil, Gas; 2013, 30, 1; 161-167
2299-4157
2300-7052
Pojawia się w:
AGH Drilling, Oil, Gas
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Drilling fluids for drilling in shale and clay rocks
Autorzy:
Wiśniowski, R.
Uliasz, M.
Zima, G.
Wysocki, S.
Gaczoł, M.
Powiązania:
https://bibliotekanauki.pl/articles/298980.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
drilling fluids
shale gas
Opis:
Clay shale rocks large intervals drilling generates a serious issues caused by hydration, swelling and dispersion of clay rock. Those reactions might lead to break-downs and complications in drilling as the consequences of borehole wall stability loss that have source in cave effect (occurrence of caverns and cavings) and borehole diameter sharp decreasing. Therefore, the outcomes of the research that have been undertaken are muds formulas adjusted for drilling various clay rock intervals.
Źródło:
AGH Drilling, Oil, Gas; 2015, 32, 2; 415-429
2299-4157
2300-7052
Pojawia się w:
AGH Drilling, Oil, Gas
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Impact of Hydraulic Fracturing on the Quality of Natural Waters
Autorzy:
Cel, W.
Kujawska, J.
Wasąg, H.
Powiązania:
https://bibliotekanauki.pl/articles/125154.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
shale gas
hydraulic fracturing
Opis:
Poland, due to the estimated shale gas deposits amounting to 346–768 billion m3 has become one of the most attractive regions for shale gas exploration in Europe. Throughout the period 2010–2015, 72 exploratory drillings were made (as of 4.01.2016), while hydraulic fracturing was carried out 25 times. Employing new drilling and shale gas prospecting technologies raises a question pertaining to their impact on the environment. The number of chemical compounds used (approximately 2000) for the production of new technological fluids may potentially pollute the environment. The fact that the composition of these fluids remains undisclosed hinders the assessment of their impact on the environment and devising optimal methods for managing this type of waste. The presented work indicates the chemical compounds which may infiltrate to groundwater, identified on the basis of technological fluids characteristics, as well as the review of studies pertaining to their impact on potable water carried out in the United States. The study focused on marking heavy metals, calcium, sodium, magnesium, potassium, chlorides and sulphates in the surface waters collected in proximity of Lewino well.
Źródło:
Journal of Ecological Engineering; 2017, 18, 2; 63-68
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geomechanical aspects of hydraulic fracture propagation in the Lublin shale gas field in Poland
Autorzy:
Dhital, Ch.
Knez, D.
Śliwa, T.
Powiązania:
https://bibliotekanauki.pl/articles/299235.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
shale gas
hydraulic fracture simulation
Opis:
The recent boom in shale gas exploration around the world has sparked a paradigm shift in energy security in many countries in the world. With the successful exploration of shale gas production in the United State’s, many operators are trying to replicate the success in other parts of the world specifically in European countries where the presence of organic rich shale deposits have signaled a promising investment for the recovery of shale gas. Perspective studies for the Polish shale gas field in Poland have been ongoing. One part of this project is the comparison of hydraulic fracture thickness between the U.S shale gas field and Polish for better and effective design and modeling of reservoirs for the optimal exploration and recovery of shale gas. Successful production of natural gas from Polish basins requires a hydraulic fracture stimulation to unlock the gas trapped in the shales coupled with a geologic analysis of the shale rocks.
Źródło:
AGH Drilling, Oil, Gas; 2015, 32, 4; 703-711
2299-4157
2300-7052
Pojawia się w:
AGH Drilling, Oil, Gas
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies