Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "classification model" wg kryterium: Wszystkie pola


Tytuł:
VMD and CNN-Based Classification Model for Infrasound Signal
Autorzy:
Lu, Quanbo
Li, Mei
Powiązania:
https://bibliotekanauki.pl/articles/31339812.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
infrasound signal
variational mode decomposition
convolutional neural network
Fast Fourier Transform
Opis:
Infrasound signal classification is vital in geological hazard monitoring systems. The traditional classification approach extracts the features and classifies the infrasound events. However, due to the manual feature extraction, its classification performance is not satisfactory. To deal with this problem, this paper presents a classification model based on variational mode decomposition (VMD) and convolutional neural network (CNN). Firstly, the infrasound signal is processed by VMD to eliminate the noise. Then fast Fourier transform (FFT) is applied to convert the reconstructed signal into a frequency domain image. Finally, a CNN model is established to automatically extract the features and classify the infrasound signals. The experimental results show that the classification accuracy of the proposed classification model is higher than the other model by nearly 5%. Therefore, the proposed approach has excellent robustness under noisy environments and huge potential in geophysical monitoring.
Źródło:
Archives of Acoustics; 2023, 48, 3; 403-412
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aspect-based sentiment classification model employing whale-optimized adaptive neural network
Autorzy:
Balaganesh, Nallathambi
Muneeswaran, K.
Powiązania:
https://bibliotekanauki.pl/articles/2173622.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
aspect-based sentiment analysis
whale optimization algorithm
artificial neural network
opinion mining
analiza nastrojów oparta na aspektach
algorytm optymalizacji wielorybów
sztuczna sieć neuronowa
eksploracja opinii
Opis:
Nowadays in e-commerce applications, aspect-based sentiment analysis has become vital, and every consumer started focusing on various aspects of the product before making the purchasing decision on online portals like Amazon, Walmart, Alibaba, etc. Hence, the enhancement of sentiment classification considering every aspect of products and services is in the limelight. In this proposed research, an aspect-based sentiment classification model has been developed employing sentiment whale-optimized adaptive neural network (SWOANN) for classifying the sentiment for key aspects of products and services. The accuracy of sentiment classification of the product and services has been improved by the optimal selection of weights of neurons in the proposed model. The promising results are obtained by analyzing the mobile phone review dataset when compared with other existing sentiment classification approaches such as support vector machine (SVM) and artificial neural network (ANN). The proposed work uses key features such as the positive opinion score, negative opinion score, and term frequency-inverse document frequency (TF-IDF) for representing each aspect of products and services, which further improves the overall effectiveness of the classifier. The proposed model can be compatible with any sentiment classification problem of products and services.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137271
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aspect-based sentiment classification model employing whale-optimized adaptive neural network
Autorzy:
Balaganesh, Nallathambi
Muneeswaran, K.
Powiązania:
https://bibliotekanauki.pl/articles/2128172.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
aspect-based sentiment analysis
whale optimization algorithm
artificial neural network
opinion mining
analiza nastrojów oparta na aspektach
algorytm optymalizacji wielorybów
sztuczna sieć neuronowa
eksploracja opinii
Opis:
Nowadays in e-commerce applications, aspect-based sentiment analysis has become vital, and every consumer started focusing on various aspects of the product before making the purchasing decision on online portals like Amazon, Walmart, Alibaba, etc. Hence, the enhancement of sentiment classification considering every aspect of products and services is in the limelight. In this proposed research, an aspect-based sentiment classification model has been developed employing sentiment whale-optimized adaptive neural network (SWOANN) for classifying the sentiment for key aspects of products and services. The accuracy of sentiment classification of the product and services has been improved by the optimal selection of weights of neurons in the proposed model. The promising results are obtained by analyzing the mobile phone review dataset when compared with other existing sentiment classification approaches such as support vector machine (SVM) and artificial neural network (ANN). The proposed work uses key features such as the positive opinion score, negative opinion score, and term frequency-inverse document frequency (TF-IDF) for representing each aspect of products and services, which further improves the overall effectiveness of the classifier. The proposed model can be compatible with any sentiment classification problem of products and services.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137271, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the state of budgetary balance over time via the one-way classification model
Autorzy:
Ekhosuehi, V. U.
Oyegue, F. O.
Powiązania:
https://bibliotekanauki.pl/articles/406496.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
budget
expenditure
fixed effects
one-way classification model
zero-sum constraint
Opis:
A study on the state of budgetary balance over time in an economy has been conducted. The planned revenues and expected expenditures contained in the budget statements over the years are used as economic instruments for the study. The one-way classification model in statistical theory is used as the theoretical underpinning to describe the budget equation. The economic implications of the signs of the fixed effects in the model are stated.
Źródło:
Operations Research and Decisions; 2015, 25, 3; 5-16
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural networks as performance improvement models in intelligent CAPP systems
Autorzy:
Rojek, I.
Powiązania:
https://bibliotekanauki.pl/articles/971020.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
classification model
neural network
tool
manufacturing operation
Opis:
The paper presents neural networks as performance improvement models in intelligent computer aided process planning systems (CAPP systems). For construction of these models three types of neural networks were used: linear network, multi-layer network with error backpropagation, and the Radial Basis Function network (RBF). The models were compared. Due to the comparison, we can say which type of neural network is the best for selection of tools for manufacturing operations. Tool selection for manufacturing operation is a classification problem. Hence, neural networks were built as classification models, meant to improve tool selection for manufacturing. The study was done for selected manufacturing operations: turning, milling and grinding. Models for the milling operation were presented in detail.
Źródło:
Control and Cybernetics; 2010, 39, 1; 54-68
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Single-ended quality measurement of a music content via convolutional recurrent neural networks
Autorzy:
Organiściak, Kamila
Borkowski, Józef
Powiązania:
https://bibliotekanauki.pl/articles/1849158.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
audio data analysis
artefacts detection
convolutional neural networks
recurrent neural networks
classification model
Opis:
The paper examines the usage of Convolutional Bidirectional Recurrent Neural Network (CBRNN) for a problem of quality measurement in a music content. The key contribution in this approach, compared to the existing research, is that the examined model is evaluated in terms of detecting acoustic anomalies without the requirement to provide a reference (clean) signal. Since real music content may include some modes of instrumental sounds, speech and singing voice or different audio effects, it is more complex to analyze than clean speech or artificial signals, especially without a comparison to the known reference content. The presented results might be treated as a proof of concept, since some specific types of artefacts are covered in this paper (examples of quantization defect, missing sound, distortion of gain characteristics, extra noise sound). However, the described model can be easily expanded to detect other impairments or used as a pre-trained model for other transfer learning processes. To examine the model efficiency several experiments have been performed and reported in the paper. The raw audio samples were transformed into Mel-scaled spectrograms and transferred as input to the model, first independently, then along with additional features (Zero Crossing Rate, Spectral Contrast). According to the obtained results, there is a significant increase in overall accuracy (by 10.1%), if Spectral Contrast information is provided together with Mel-scaled spectrograms. The paper examines also the influence of recursive layers on effectiveness of the artefact classification task.
Źródło:
Metrology and Measurement Systems; 2020, 27, 4; 721-733
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of neuron image analysis to build classification model of corpora lutea of domestic cattle
Wykorzystanie neuronowej analizy obrazu w budowie modelu klasyfikacyjnego ciałek żółtych u bydła domowego
Autorzy:
Górna, K.
Zaborowicz, M.
Jaśkowski, B. M.
Idziaszek, P.
Okoń, P.
Boniecki, P.
Przybył, J.
Powiązania:
https://bibliotekanauki.pl/articles/337157.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
neural modeling
computer image analysis
corpus luteum
ovaries
domestic cattle
modelowanie neuronowe
komputerowa analiza obrazu
ciałko żółte
jajnik
bydło domowe
Opis:
The paper presents the results of studies on the usefulness of the texture images USG (ultrasonography) analysis by GLCM (Gray Level Co-Occurrence Matrix) in neural modeling. Tests pertained to the efficacy of the classification of the corpora lutea located in ultrasound images of the domestic cattle ovaries performed by artificial neural networks. The tests were performed using three different methods: the first one used unprocessed images - raw, the second method used image processing - unsharp mask. In the third method the raw images were processed by filter reducing the noise - despeckle filter. For each of the presented methods, the best generated neural network model had the structure of the MLP (Multi Layers Perceptron). The best results, in terms of artificial neural network were obtained in the case of ultrasound images that were not processed prior to texture analysis. As a result, it generated MLP neural model of structure 5:5-8-1:1.
W pracy zaprezentowano wyniki przeprowadzonych badań nad przydatnością analizy tekstury obrazów USG (UltraSonoGraphy) metodą GLCM (Gray Level Co-Occurrence Matrix) w modelowaniu neuronowym. Sprawdzano skuteczność klasyfikacji przez sztuczne sieci neuronowe ciałek żółtych znajdujących się na obrazach USG jajników bydła domowego. Badania wykonano za pomocą trzech różnych metod: w pierwszej wykorzystano obrazy nieprzetworzone - surowe, w drugiej posłużono się metodą przetwarzania obrazu - filtrem wyostrzającym. Natomiast w trzecim sposobie obrazy surowe zostały przetworzone filtrem redukującym zaszumienia. Dla każdej z zaprezentowanych metod, najlepszy wygenerowany model sieci neuronowej miał strukturę MLP (Multi Layer Perceptron). Najlepsze wyniki, pod względem jakości sztucznej sieci neuronowej uzyskano w przypadku obrazów USG, które nie były przetwarzane przed analizą tekstur. W efekcie wygenerowano model neuronowy MLP o strukturze 5:5-8-1:1.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2016, 61, 3; 162-166
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sensor Actor Network Modeling utilizing the Holonic Architectural Framework
Autorzy:
Chiu, C.
Chaczko, Z.
Moses, P.
Powiązania:
https://bibliotekanauki.pl/articles/226170.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Extended Kohonen Maps (EKM)
Sensor Actor Networks (SANET)
Wireless Sensor Networks (WSN)
SANET Middleware
POE Classification Model
holonic architecture
Opis:
This paper discusses the results of utilizing advanced EKM modeling techniques to manage Sensor-Actor networks (SANETs) based upon the Holonic Architectural Framework. EKMs allow a quantitative analysis of an algorithmic artificial neural network process by using an indirect-mapping EKM to self-organize from a given input space to administer SANET routing and clustering functions with a control parameter space. Results demonstrate that in comparison to linear approximation techniques, indirect mapping with EKMs provide fluid control and feedback mechanisms by operating in a continuous sensory control space – thus enabling interactive detection and optimization of events in real-time environments.
Źródło:
International Journal of Electronics and Telecommunications; 2010, 56, 1; 49-54
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Crash data reporting systems in Fourteen Arab countries: challenges and improvement
Autorzy:
Abounoas, Zahira
Raphael, Wassim
Badr, Yarob
Faddoul, Rafic
Guillaume, Anne
Powiązania:
https://bibliotekanauki.pl/articles/1833641.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
road accidents
road safety
information system
reporting system
variables selection
classification model
wypadek drogowy
bezpieczeństwo na drogach
system informacyjny
systemy raportowania
dobór zmiennych
model klasyfikacji
Opis:
Traffic crash fatalities and serious injuries still represent a big burden for most Arab countries because the actual policies, strategies, and interventions are based on poorly collected data. Through this paper, we assessed the crash data reporting systems in Fourteen Arab countries via a survey conducted to identify the fundamental dysfunctions at the management and data collection levels. Then, to address some of the dataset problems, we had applied data mining technics to select a minimum of variables (crash, vehicle, and road user) that should be collected for a better understanding of crash circumstances. For this raison, three methods of selection (correlation, information gain, and gain ratio) and seven classifiers (naive Bayes, nearest neighbour, random forest, random tree, J48, reduced error pruning tree, and bagging) were tested and compared to identify the variables that affect significantly the crashes severity. Decision trees family of classifiers showed the best performance based on the analysis of the area under the curve. The explanatory variables obtained from the data mining process were combined with other descriptive variables to maintain traceability. As a result, we produced hybrid lists of variables for the crash, vehicle, and road user, each contains 25 variables. Finally, in order to propose a cost-effective solution to switch from manual to electronic data collection, we got inspired by a tool used to track animals to create and customize a unified e-form for handheld devices, in order to ensure easy entering of the harmonized data for the entire region based on our selected lists of variables. The tool verified the countries requirements especially by enabling data collection and transfer with and without the internet, and by allowing data analysis thought its built-in Geographic Information System (GIS) capabilities.
Źródło:
Archives of Transport; 2020, 56, 4; 73-88
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of happiness in EU countries using the multi-model classification based on models of symbolic data
Autorzy:
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/425036.pdf
Data publikacji:
2019
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
happiness
the European Union
symbolic data analysis
ensemble clustering
Opis:
The results of happiness analysis are presented in the form of a World Happiness Report that covers 156 countries and 17 different indicators. In the article model-based clustering ensemble is built to determine what selected European countries have similar patterns of happiness. The results are analyzed using multidimensional scaling and a decision tree to find out what factors determine cluster memberships. In the empirical part, three clusters were detected The first contains countries: Austria, Denmark, Finland, Germany, Ireland, Luxembourg, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom. They have the highest values for all the variables, except the negative affect. The second cluster contains seven countries: Bulgaria, Estonia, Hungary, Lithuania, Poland, Romania and Slovakia. This cluster is also the most homogeneous one. The third cluster contains eight countries: Cyprus, the Czech Republic, France, Greece, Italy, Portugal, Slovenia and Spain.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2019, 23, 3; 15-25
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cut size determination of centrifugal classifier with fluidized bed
Wyznaczanie ziarna granicznego klasyfikatora odśrodkowego z warstwą fluidalną
Autorzy:
Otwinowski, H.
Powiązania:
https://bibliotekanauki.pl/articles/219701.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wyznaczanie ziarna granicznego
macierzowy model klasyfikacji
krzywa Trompa
klasyfikator aerodynamiczny
cut size determination
classification matrix model
Tromp curve
air classifier
Opis:
The cut size determination on the basis of proposed matrix model of classification process in a centrifugal air flow classifier with a fluidized bed is presented using matrix model. The presented methodology of cut size determination is based on the precise measurement of the total mass of fed material and coarse product in experimental tests. Knowledge of the feed particle size distribution is also required. Considered classifier is a part of the fluidized bed jet mill. The presented cut size determination will allow to optimize mill work and prediction of particle size distribution of the classification products.
W artykule przedstawiono metodykę wyznaczania rozmiaru ziarna granicznego procesu klasyfikacji w odśrodkowym klasyfikatorze przepływowym z warstwą fluidalną przy wykorzystaniu modelu macierzowego. Przedstawiona metodyka oparta jest na dokładnym wyznaczeniu masy nadawy i gruboziarnistego produktu klasyfikacji na podstawie badań eksperymentalnych. Wymagana jest także znajomość składu ziarnowego nadawy. Rozpatrywany klasyfikator stanowi część fluidalnego młyna strumieniowego. Wyznaczenie rozmiaru ziarna granicznego umożliwia przeprowadzenie optymalizacji pracy młyna i prognozowanie składu ziarnowego produktów klasyfikacji.
Źródło:
Archives of Mining Sciences; 2013, 58, 3; 823-841
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Degradation assessment of bearing based on machine learning classification matrix
Autorzy:
Kumar, Satish
Kumar, Paras
Kumar, Girish
Powiązania:
https://bibliotekanauki.pl/articles/1841739.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
degradation state
health condition indicator
machine learning
diagnostic model
prognostic model
Opis:
In the broad framework of degradation assessment of bearing, the final objectives of bearing condition monitoring is to evaluate different degradation states and to estimate the quantitative analysis of degree of performance degradation. Machine learning classification matrices have been used to train models based on health data and real time feedback. Diagnostic and prognostic models based on data driven perspective have been used in the prior research work to improve the bearing degradation assessment. Industry 4.0 has required the research in advanced diagnostic and prognostic algorithm to enhance the accuracy of models. A classification model which is based on machine learning classification matrix to assess the degradation of bearing is proposed to improve the accuracy of classification model. Review work demonstrates the comparisons among the available state-of-the-art methods. In the end, unexplored research technical challenges and niches of opportunity for future researchers are discussed.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 2; 395-404
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measures of Diversity and the Classification Error in the Multiple-model Approach
Miary zróżnicowania modeli a błąd klasyfikacji w podejściu wielomodelowym
Autorzy:
Gatnar, Eugeniusz
Powiązania:
https://bibliotekanauki.pl/articles/905052.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Multiple-model approach
Model fusion
Classifier ensemble
Diversity measures
Opis:
Multiple-model approach (model aggregation, model fusion) is most commonly used in classification and regression. In this approach K component (single) models C1(x), C1(x), … , CK(x) are combined into one global model (ensemble) C*(x), for example using majority voting: K C* = arg max {Σ I (Ck(x)=y)} (1) y k=1 Turner i Ghosh (1996) proved that the classification error of the ensemble C*(x) depends on the diversity of the ensemble members. In other words, the higher diversity of component models, the lower classification error of the combined model. Since several diversity measures for classifier ensembles have been proposed so far in this paper we present a comparison of the ability of selected diversity measures to predict the accuracy of classifier ensembles.
Podejście wielomodelowe (agregacja modeli), stosowane najczęściej w analizie dyskryminacyjnej i regresyjnej, polega na połączeniu M modeli składowych C1(x), ..., CM(x) jeden model globalny C*(x): K C* = arg max {Σ I (Cm(x)=y)} y k=1 Turner i Ghosh (1996) udowodnili, że błąd klasyfikacji dla modelu zagregowanego C*(x) zależy od stopnia podobieństwa (zróżnicowania) modeli składowych. Inaczej mówiąc, najbardziej dokładny model C*(x) składa się z modeli najbardziej do siebie niepodobnych, tj. zupełnie inaczej klasyfikujących te same obiekty. W literaturze zaproponowano kilka miar pozwalających ocenić podobieństwo (zróżnicowanie) modeli składowych w podejściu wielomodelowym. W artykule omówiono związek znanych miar zróżnicowania z oceną wielkości błędu klasyfikacji modelu zagregowanego.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 225
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effects of Being in an Occupation – Is ISCO 1 Digit Classification Enough to Model Wages in Poland?
Efekt wykonywanego zawodu – czy wykorzystywanie klasyfikacji ISCO na poziomie jednej cyfry wystarcza, żeby modelować wynagrodzenia w Polsce?
Autorzy:
Ryczkowski, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/1364870.pdf
Data publikacji:
2015-09-30
Wydawca:
Główny Urząd Statystyczny
Tematy:
determinants of wages
wages modeling
occupations
importance of occupatio
determinanty wynagrodzeń
modelowanie wynagrodzeń
zawody
znaczenie wykonywanego zawodu
Opis:
Contrary to neoclassical assumptions of perfect competition, there is a consensus that factors affecting wages include sex, level of education, age, job experience, occupation, post, work-related responsibility and a whole set of personality traits. The paper presents an econometric model that allows to explain wage differences in Poland and extends analyses of wage determinants in Poland by taking into account occupations broken down in accordance with the 2-digit level of International Standard Classification of Occupations (ISCO). The analysis shows that ISCO 2 digit level is an important and statistically significant determinant of wages in Poland, while models of wages basing on ISCO 1 digit might be not enough to properly capture the role of occupations.
W przeciwieństwie do neoklasycznych założeń doskonałej konkurencji istnieje konsensus, że do czynników wpływających na wysokość uzyskiwanego wynagrodzenia zaliczyć należy płeć, poziom wykształcenia, wiek, doświadczenie zawodowe, wykonywany zawód, posiadane stanowisko, stopień odpowiedzialności związanej z wykonywaną pracą oraz cały zestaw indywidualnych cech osobowościowych. W artykule posługując się Międzynarodową Klasyfikacją Zawodów i Specjalności (ISCO) na poziomie 2 cyfr uzyskano oceny parametrów strukturalnych modelu, które pozwalają wyjaśnić różnice wynagrodzeń w Polsce. Na podstawie przeprowadzonej analizy stwierdzono, że wykonywany zawód, mierzony na poziomie ISCO 2 cyfry jest ważną i statystycznie istotną zmienną oddziałującą na wysokość uzyskiwanego wynagrodzenia w Polsce. Modelowanie wynagrodzeń wykorzystujące klasyfikację ISCO, ale ograniczoną tylko do poziomu 1 cyfry, może być niewystarczające, aby prawidłowo uchwycić znaczenie wykonywanego zawodu dla uzyskiwanego wynagrodzenia.
Źródło:
Przegląd Statystyczny; 2015, 62, 3; 321-344
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Proposal of new criteria model on the classification of ports open topublic transport of the county importance: case study – zadar county
Autorzy:
Gundić, A.
Županović, D.
Barić, M.
Peričin, L.
Powiązania:
https://bibliotekanauki.pl/articles/24201472.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Opis:
Successful and sustainable development of county ports implies identification and assessment of all the elements that affect their performance. Several factors determine port’s performance out of which the most significant one is its position, usually in the centre of a town/settlement. This situation is the most common in the Mediterranean countries where small ports are usually in the centre of a settlement. Such a location of ports affects their urban and spatial planning, i.e., it affects planning the development of county ports. To determine a direction of development of any port (of county importance), analysis and assessment of the current port conditions as well as the role and proportion of its operations are a mandatory prerequisite. Currently defined criteria on the classification of ports open to public transport (of all categories) of county importance (in Croatia) are rigid and imprecise, and therefore, cannot be a credible element to assess ports open to public transport of county or regional importance not matter of their specific attributes. Therefore, this article, based on the conducted analysis, presents new criteria model on the classification of ports open to public transport of county importance – a methodology that can be applied when analysing the current condition of county ports in Croatia based upon eight ports of county importance in Zadar County – Ports of Preko, Biograd, Tkon, Brbinj/Lučina, Fortica, Zaglav, Silba/Žalić and Pag.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 2; 473--479
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies