- Tytuł:
- Rotation schemes and Chebyshev polynomials
- Autorzy:
- Wesołowski, Jacek
- Powiązania:
- https://bibliotekanauki.pl/articles/18105126.pdf
- Data publikacji:
- 2023-06-13
- Wydawca:
- Główny Urząd Statystyczny
- Opis:
- There is a continuing interplay between mathematics and survey methodology involving different branches of mathematics, not only probability. This interplay is quite obvious as regards the first of the two options: probability vs. non-probability sampling, as proposed and discussed in Kalton (2023). There, mathematics is represented by probability and mathematical statistics. However, sometimes connections between mathematics and survey methodology are less obvious, yet still crucial and intriguing. In this paper we refer to such an unexpected relation, namely between rotation sampling and Chebyshev polynomials. This connection, introduced in Kowalski and Wesołowski (2015), proved fundamental for the derivation of an explicit form of the recursion for the BLUE µ^t of the mean on each occasion t in repeated surveys based on a cascade rotation scheme. This general result was obtained under two basic assumptions: ASSUMPTION I and ASSUMPTION II, expressed in terms of the Chebyshev polynomials. Moreover, in that paper, it was conjectured that these two assumptions are always satisfied, so the derived form of recursion is universally valid. In this paper, we partially confirm this conjecture by showing that ASSUMPTION I is satisfied for rotation patterns with a single gap of an arbitrary size.
- Źródło:
-
Statistics in Transition new series; 2023, 24, 3; 47-59
1234-7655 - Pojawia się w:
- Statistics in Transition new series
- Dostawca treści:
- Biblioteka Nauki