Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Poluszyńska, Joanna" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
The content of heavy metal ions in ash from waste incinerated in domestic furnaces
Autorzy:
Poluszyńska, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/205178.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
heavy metals
wastes
ICP-MS
ash from waste
Opis:
The article presents the results of preliminary tests obtained from the analysis of ash coming from the combustion of various types of waste in household furnaces. The aim of this work was to examine the influence of various types of waste burned in household furnaces on the elemental composition of the generated ash. As part of the research, analyses of ash generated from the incineration of mixed waste, plastics, wood, textiles, rubber waste and paper were made. The content of selected metal ions: Mn, Cu, Mo, Zn, Cd, Tl, Cr, Co, Ni, As, Sn, Sb, Pb, V was determined in the tested samples, according to PN-EN ISO 17294-2: 2016-11 standard. The highest concentrations of zinc were found in the large-sized waste, rubber and textile ash samples and highest concentrations of copper were found in the plastic and paper ash samples. The highest concentrations for elements such as copper, lead, cobalt and chromium were recorded for samples of rubber and large-sized waste containing e.g. varnished furniture boards. The obtained results showed that depending on the waste incinerated, the content of selected metals was significantly different, and the highest concentrations were noted for samples of large-sized waste, waste from segregated plastics and waste from rubbers.
Źródło:
Archives of Environmental Protection; 2020, 46, 2; 68-73
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of temperature on the biodegradation of different types of packaging materials under test conditions
Autorzy:
Poluszyńska, Joanna
Ciesielczuk, Tomasz
Biernacki, Marcin
Paciorkowski, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/2073800.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fermentation
polymer waste
microbial degradation
temperature
CO2 production
Opis:
The development of civilization contributed to the exponential growth in the production of plastics. Policy of the, so-called, “European Green Deal” places particular emphasis on reducing the use of plastics through various mechanisms, including their reuse, recycling and, in particular, the development of new biodegradable and compostable plastics. In order to check if plastics are suitable for biodegradability and compostability they must undergo a series of tests in accordance with applicable standards. The biodegradation test procedures are very general and allow for the use of different temperatures of the biodegradation process in the test. The aim of the research was to evaluate the influence of temperature on the biodegradation process of selected packaging materials. The obtained results show a significant influence of the temperature of the biodegradation process of all 3 tested types of packaging materials: oxy-biodegradable, corn starch and paper. Statistically significant differences in the biodegradation rate of the tested packaging materials were demonstrated in as low as 40°C, despite the low intensity of the process. As the process temperature increased to 45 and 50°C, a statistically significant increase in CO2 productions was recorded. CO2 is produced by the degradation of polymers and is an indicator for this process. At 50°C, the highest decomposition rate, resulting in the highest CO2 production, was recorded in the case of corn starch films. Oxy-biodegradable material showed worst degradation potential what excludes it from composting processes.
Źródło:
Archives of Environmental Protection; 2021, 47, 4; 74--83
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of Effectiveness of Organo-Mineral Fertilizer Made of Coffee Spent Grounds and Biomass Ash
Autorzy:
Ciesielczuk, Tomasz
Rosik-Dulewska, Czesława
Poluszyńska, Joanna
Ślęzak, Ewelina
Powiązania:
https://bibliotekanauki.pl/articles/123981.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
fertilizer
coffee spent ground
Solidago
yield
energy
Opis:
Optimization of the biodegradable wastes management is one of the main goals of the activities taken up in the European Union. The aim of the present paper is to define the possibilities of supporting the process of golden rod yield (Solidago canadensis L.) by using different mineral-organic fertilizers, in a form of granulated substances, produced from extracted coffee wastes (CSG) as well as from ash which is the result of woody biomass combustion. Golden rod, as a potential energetic plant, is very easy to grow because it covers the grounds which are not utilized agriculturally or the ones localised in the close neighbourhood of industrial areas. For certain experimental purposes, a field experiment was conducted. Six experimental plots constituted its basis, two experimental fertilizers based on the extracted coffee wastes (in the amount of 100g/m2), ash from the process of thermal biomass transition and two commercial fertilizers were applied. After 160 days of the experiment, the golden rod harvest was submitted to quantitative-qualitative analysis. An analysis of basic soil parameters (pH, EC, TOC) was also carried out and the content of significant elements, as far as fertilizers are concerned, N, P, K, Ca, Mg was analysed too. As a result of the conducted experiment, the yield rise was observed, both in the case of the plants fed with commercial fertilizers as well as the ones cultivated on the basis of the extracted wastes. Using fertilizers does not only allow for management of the wastes produced in farm areas but also enables to increase the achieved amount of golden rod crops as well as to boost energy that is sourced in the process of biomass used for energetic purposes.
Źródło:
Journal of Ecological Engineering; 2019, 20, 2; 73-78
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies