Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Cichosz, Paweł" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Bag of words and embedding text representation methods for medical article classification
Autorzy:
Cichosz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/24403007.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
text representation
text classification
bag of words
word embedding
reprezentacja tekstu
klasyfikacja tekstu
osadzanie słów
Opis:
Text classification has become a standard component of automated systematic literature review (SLR) solutions, where articles are classified as relevant or irrelevant to a particular literature study topic. Conventional machine learning algorithms for tabular data which can learn quickly from not necessarily large and usually imbalanced data with low computational demands are well suited to this application, but they require that the text data be transformed to a vector representation. This work investigates the utility of different types of text representations for this purpose. Experiments are presented using the bag of words representation and selected representations based on word or text embeddings: word2vec, doc2vec, GloVe, fastText, Flair, and BioBERT. Four classification algorithms are used with these representations: a naive Bayes classifier, logistic regression, support vector machines, and random forest. They are applied to datasets consisting of scientific article abstracts from systematic literature review studies in the medical domain and compared with the pre-trained BioBERT model fine-tuned for classification. The obtained results confirm that the choice of text representation is essential for successful text classification. It turns out that, while the standard bag of words representation is hard to beat, fastText word embeddings make it possible to achieve roughly the same level of classification quality with the added benefit of much lower dimensionality and capability of handling out-of-vocabulary words. More refined embeddings methods based on deep neural networks, while much more demanding computationally, do not appear to offer substantial advantages for the classification task. The fine-tuned BioBERT classification model performs on par with conventional algorithms when they are coupled with their best text representation methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 4; 603--621
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Blockchain technology — innovation and security
Autorzy:
Borowik, Grzegorz
Wawrzyniak, Zbigniew
Cichosz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1929830.pdf
Data publikacji:
2020-04-20
Wydawca:
Wyższa Szkoła Policji w Szczytnie
Tematy:
blockchain
smart contract
security
innovation
cryptocurrency
Bitcoin
Ethereum
proof-of-work
Opis:
Blockchain is one of the most revolutionary technologies of the 21st century, which is still under development, and whose potential is not yet fully exploited. Although blockchain gained importance in 2009, scientists and entrepreneurs are still at an early stage of understanding its mechanisms and fully appreciating its potential, especially from the perspective of the technical challenges and limitations of the technology. Blockchain fi nds a variety of applications, especially in areas that have so far been based on third-party transactions in order to maintain a certain level of trust. Although blockchain is a promising technology for the reorganisation of business processes and many industrial applications, it still has many weaknesses despite various implementations in many forms. An innovative element, and one of the most attractive functions, of blockchain is intelligent contracts, as they reduce or even completely eliminate the administrative costs associated with the lack of trust in the transaction. However, the existing software that is built on this infrastructure has many shortcomings and unfortunately, combined with the lack of maturity of the scripting language to write the contract representation in the computer language, leads to errors or gaps in security that are not noticed or addressed by the author of the script. So far, no blockchain-based system has been completely broken. Nevertheless, phishing is the main trend in the operation of criminals in blockchain networks. Research has shown that over $115 million has been stolen from nearly 17,000 victims in the Ethereum blockchain alone. It is estimated that in total about 10% of the money invested in Ethereum’s ICO has ended up in the hands of criminals.
Źródło:
Przegląd Policyjny; 2019, 136(4); 60-78
0867-5708
Pojawia się w:
Przegląd Policyjny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies