Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "tryskacz" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Zależność rozdziału wody od współczynnika przepływu dla wybranych tryskaczy ESFR
The Dependence of Water Distribution on the Flow Coefficient of Selected ESFR Sprinklers
Autorzy:
Domżał, A.
Wnęk, W.
Prokop, M.
Powiązania:
https://bibliotekanauki.pl/articles/373238.pdf
Data publikacji:
2016
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
stałe urządzenie gaśnicze
tryskacz
deflektor
rozdział wody
fixed extinguishing systems
sprinkler
deflector
water distribution
Opis:
Cel: Celem artykułu jest przedstawienie wyników badań laboratoryjnych dla wybranych tryskaczy szybkiego reagowania o średnicy 20 mm tzw. ESFR (Early Supression Fast Response). Tryskacze były poddane badaniu na rozkład wody poniżej i powyżej deflektora w celu ustalenia proporcji rozkładu wody nad przestrzenią planowaną do zabezpieczenia przez instalację tryskaczową. Opisano metodykę badawczą, podano zmierzone parametry wpływające na wyniki badań oraz wskazano przykłady zastosowania badanych tryskaczy w warunkach rzeczywistych. Wprowadzenie: Pożary stanowią duże zagrożenie dla zdrowia i życia ludzi. W związku z tym poszukiwane są rozwiązania w zakresie elementów liniowych instalacji tryskaczowych, które umożliwią podawanie jak największej ilości wody na palącą się substancję. Elementem wpływającym na efektywność gaszenia jest równomierność zraszania oraz rozdział wody. Innymi słowy, ile wody podawane jest na powierzchnię pod tryskaczem, a ile na strop budynku. Metodologia: Artykuł został opracowany na podstawie wyników badań laboratoryjnych przeprowadzonych według normy PN-EN 12259-1. Stałe urządzenia gaśnicze. Podzespoły urządzeń tryskaczowych i zraszaczowych. Część 1: Tryskacze. Wnioski: Instalacje tryskaczowe umożliwiają zwalczenie pożaru w pierwszej fazie jego wystąpienia oraz zapobiegają jego rozprzestrzenianiu się. Ich główną zaletą jest selektywne działanie, pozwalające na ograniczenie akcji gaśniczej tylko do miejsca wystąpienia pożaru, a więc zredukowanie strat spowodowanych działaniem wody. Z przeprowadzonych pomiarów wynika, że: – tryskacze ESFR jako elementy liniowe instalacji tryskaczowej zraszają powierzchnię z dużą intensywnością zależną od ciśnienia, sięgającą dla badanych elementów powyżej 460 l/min, – duże intensywności zraszania generują potrzebę postawienia szczególnych wymagań co do rozmieszczania i doboru rodzaju instalacji tryskaczowej, – na rozdział rozpraszanej wody poniżej, jak i powyżej deflektora ma wpływ współczynnik przelotowości K badanych tryskaczy, – przy wzroście współczynnika K wzrasta rozdział wody, co powoduje zmianę w postaci wzrostu ilości wody poniżej deflektora dla badanego tryskacza wiszącego, – przy wzroście współczynnika K w funkcji ciśnienia osiągane są większe zmiany wydajności wodnej tryskaczy poniżej, jak i powyżej deflektora.
Aim: The purpose of this paper is to present the results from experiments involving the distribution of water from selected quick-response sprinklers with a diameter of 20 mm, known as Early-Suppression Fast-Response (ESFR) sprinklers. Introduction: Fires are the cause of great risks to human life and health. There is a search for solutions to address the linear elements of sprinkler systems which facilitate the delivery of the maximum volume of water onto materials exposed to a fire. The elements which influence extinguishing effectiveness include the uniformity of spray and the dispersion of water. In other words, the volume of water delivered to the surface area beneath the sprinkler and to the roof of a building. Methodology: The paper was based on research results derived from studies conducted in accordance with PN-EN 12259-1, dealing with fixed extinguishing systems - elements of sprinkler systems, Part 1, Sprinklers. Sprinklers were tested for water distribution above and below the deflector to establish the proportion of water distributed above the protected area. The testing methodology was appropriately described and the parameters which influenced the results were identified. Additionally, the use of tested sprinklers was exemplified in real-life conditions. Conclusions: Sprinkler systems facilitate the successful extinguishing of fires during the initial phase of fire development and also prevent the propagation of flames. The main advantage of sprinkler systems is their selective operation. By concentrating extinguishing activities on the immediate area of a fire, potential damage caused by water activity are reduced. The experimental results demonstrate that depending on pressure, ESFR sprinklers used as linear elements in a sprinkler installation can spray an area with considerable intensity. For the tested elements, achieved levels were in excess of 460 l/min, – a high spray intensity can mean different requirements for the location and application of sprinklers, – water distribution above and below the deflector can be influenced by the K-factor of tested sprinklers, – increasing the K-factor intensified the distribution of water, which in turn increased the amount of water below the deflector of a suspended test sprinkler, – by increasing the K-factor as a function of pressure, greater changes are achieved in the water output of sprinklers above and below the deflector.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2016, 43, 3; 63-72
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
NFPA 13 niejedno ma imię
Autorzy:
Wolny, Paweł (pożarnictwo).
Powiązania:
Przegląd Pożarniczy 2020, nr 11, s. 28-31
Data publikacji:
2020
Tematy:
Ochrona przeciwpożarowa
Gaszenie (pożarnictwo)
Tryskacz (pożarnictwo)
Normy
Instalacje tryskaczowe
Artykuł z czasopisma fachowego
Opis:
Artykuł dotyczy instalacji tryskaczowych w USA i ich standaryzacji według normy NFPA 13R, dostosowanej do wymogów budownictwa mieszkaniowego, normy bazowej NFPA 13 i normy NFPA13D obejmującej domy jedno- i dwurodzinne oraz prefabrykowane. Tryskacze są powszechnie stosowane w Stanach Zjednoczonych od lat 60. XX wieku w budynkach komercyjnych, a od lat 90. w handlowo-mieszkalnych. Raport NFPA (Narodowy Związek Ochrony Przeciwpożarowej) wykazał, że w budynkach z zainstalowanymi tryskaczami liczba ofiar śmiertelnych jest niższa o 81%. Pomimo potwierdzonej skuteczności tych systemów nie ma obowiązku ich stosowania, a działania lobbystów budowlanych blokują ich wdrożenie. Porównano zalecenia dla tryskaczy zgodnie z normami NFPA 13.
Dostawca treści:
Bibliografia CBW
Artykuł
Tytuł:
Soveršenstvovanie normativnoj metodiki opredeleniâ inercionnogo intervala vremeni srabatyvaniâ orositelâ
Improvement of the Standard Technique for Determination of the Sprinkler Response Time
Udoskonalenie normatywnej metodyki określenia czasu zadziałania tryskacza pożarowego
Autorzy:
Kitsak, A. I.
Powiązania:
https://bibliotekanauki.pl/articles/373540.pdf
Data publikacji:
2016
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
sprinkler
thermal element
inertial interval of reaction
heat flow
direction of heat flow
tryskacz
element termoczuły
czas zadziałania
strumień powietrza
kierunek strumienia powietrza
Opis:
Objective: The most important standard indicator which is determined during the sprinkler testing is the time of their reaction. This parameter is used to determine thermal sensitivity of the sprinkler triggering element and determines the speed of its activation. Analysis of modern standard methods for determining the parameters of sprinkler response time showed that the use of the heating mode of the heating sprinkler element when determining the factor of thermal conductivity does not provide the condition of stationary heat transfer for the heating elements, which is necessary to obtain correct results when evaluating this parameter. In the European standard EN 12259-1:1999 and international standard ISO/FDIS 6182 sprinkler reaction time is defined only at the direction of the heat flow perpendicular to an axis of the sprinkler thermal element. It is known that convective heat transfer occurs at the normal body component of the heat flow. Consequently, the heat transfer coefficient of thermal elements and sprinkler reaction time depend on the direction of the heat flow. The purpose of this article is the improvement of a standard technique of sprinkler reaction time by specifying the measurement procedure of the heat leakage factor from the sprinkler heat element towards the body of the sprinkler and including the dependence between sprinkler reaction time and the direction of airflows on the thermal element. Project and methods: In order to achieve the set objective, applied was a mathematical and experimental of method of modeling of processes of heating sprinkler thermal element using airflows of different temperatures and directions. Results: The theoretical analysis of the process of the heating sprinkler thermal element of heat flow with linearly time-varying temperature, was conducted. The conditions of heating, in which the relation used in the existing standards for the evaluation of thermal conductivity of factor C were determined. A significant increase in sprinkler reaction time under the influence of heat flow along the axis of its heating elements was experimentally determined. Conclusions: In order to increase the accuracy of evaluation of conductivity coefficient of the thermal element of the sprinkler, it is necessary to carry out heating of the sprinkler in the heating chamber in a constant manner using linearly varying temperature starting from the assembly temperature to the operational temperature. In order to properly classify sprinklers according to their response time, the evaluation of the indicator of the response time should be carried out also when heat is directed along the axis of the thermal element of the sprinkler, regardless of its type.
Cel: Najważniejszym normatywnym parametrem, ocenianym podczas badań tryskaczy, jest ich czas zadziałania. Parametr ten służy do wyznaczania czułości termicznej elementu tryskacza oraz określenia szybkości jego zadziałania. Analiza obowiązujących metod normatywnych do określenia parametrów czasu zadziałania tryskaczy wykazała, że stosowana w nich technika nagrzewania elementu termoczułego podczas wyznaczania współczynnika przewodności cieplnej nie zapewnia całkowitego spełnienia restrykcyjnego warunku stacjonarności wymiany ciepła między elementem termoczułym, który jest niezbędny do uzyskania prawidłowych wyników w ocenie tego parametru. Europejski standard EN 12259-1:1999 i międzynarodowy standard ISO/FDIS 6182 opisują badanie wyznaczenia czasu zadziałania tryskaczy wyłącznie poprzez skierowanie strumienia nagrzanego powietrza w kierunku prostopadłym do osi elementu termoczułego tryskacza. Wiadomo, że przekazanie ciepła przez konwekcję zachodzi według normalnej składowej strumienia ciepła. Dlatego też współczynnik wymiany ciepła do elementu termoczułego i czas zadziałania tryskacza zależą od kierunku strumienia ciepła. Celem pracy jest udoskonalenie metody normatywnej do wyznaczania czasu zadziałania tryskacza poprzez doprecyzowanie procedury pomiaru współczynnika odpływu ciepła od elementu termoczułego w stronę korpusu tryskacza i uwzględnienia zależności między czasem zadziałania tryskacza a kierunkiem strumieni powietrza oddziałujących na element termoczuły. Projekt i metody: W celu realizacji postawionego celu wykorzystano metodę matematycznego i eksperymentalnego modelowania procesów nagrzewania elementu termoczułego tryskacza strumieniami powietrza o różnej temperaturze i kierunku. Wyniki: Przeprowadzono analizę teoretyczną procesu nagrzewania elementu termoczułego tryskacza podczas działania strumienia powietrza ze zmieniającą się temperaturą. Określono warunki nagrzewania, przy których otrzymuje się prawidłowy wynik zależności stosowanej w aktualnych normach w celu wyznaczenia współczynnika przewodności cieplnej C. W sposób eksperymentalny wykazano znaczne zwiększenie czasu zadziałania tryskacza przy oddziaływaniu ciepła wzdłuż osi jego elementu termoczułego. Wnioski: W celu zwiększenia dokładności oceny współczynnika przewodności C elementu termoczułego tryskacza nagrzewanie tryskacza należy przeprowadzać w komorze cieplnej w sposób stały, temperaturą zmieniającą się liniowo zaczynając od temperatury montażowej do temperatury zadziałania. W celu poprawnej klasyfikacji tryskaczy według czasu zadziałania ocenę wskaźnika czasu zadziałania RTI, należy przeprowadzać również przy działaniu ciepła wzdłuż osi elementu termoczułego tryskaczy, niezależnie od ich typu.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2016, 42, 2; 81-86
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies