Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "traceable graphs" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Mácajová and Škoviera conjecture on cubic graphs
Autorzy:
Fouquet, Jean-Luc
Vanherpe, Jean-Marie
Powiązania:
https://bibliotekanauki.pl/articles/744280.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Cubic graph
edge-partition
traceable graphs
Opis:
A conjecture of Mácajová and Skoviera asserts that every bridgeless cubic graph has two perfect matchings whose intersection does not contain any odd edge cut. We prove this conjecture for graphs with few vertices and we give a stronger result for traceable graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 2; 315-333
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A note of arbitrarily vertex decomposable graphs
Autorzy:
Marczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/254919.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
arbitrarily vertex decomposable graphs
traceable graphs
independence number
perfect matching
Opis:
A graph G of order n is said to be arbitrarily vertex decomposable if for each sequence (n1,..., nk) of positive integers such that n1 + ... + nk = n there exists a partition (V1,..., Vk) of the vertex set of G such that for each i ∈ {1,..., k}, Vi induces a connected subgraph of G on ni vertices. In this paper we show that if G is a two-connected graph on n vertices with the independence number at most ⌈n/2⌉ and such that the degree sum of any pair of non-adjacent vertices is at least n - 3, then G is arbitrarily vertex decomposable. We present another result for connected graphs satisfying a similar condition, where the bound n - 3 is replaced by n - 2.
Źródło:
Opuscula Mathematica; 2006, 26, 1; 109-118
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies