Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "topological neural networks" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Impact of learners’ quality and diversity in collaborative clustering
Autorzy:
Rastin, Parisa
Matei, Basarab
Cabanes, Guénaël
Grozavu, Nistor
Bennani, Younés
Powiązania:
https://bibliotekanauki.pl/articles/91600.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
collaborative clustering
topological neural networks
unsupervised learning
diversity
quality
Opis:
Collaborative Clustering is a data mining task the aim of which is to use several clustering algorithms to analyze different aspects of the same data. The aim of collaborative clustering is to reveal the common underlying structure of data spread across multiple data sites by applying clustering techniques. The idea of collaborative clustering is that each collaborator shares some information about the segmentation (structure) of its local data and improve its own clustering with the information provided by the other learners. This paper analyses the impact of the quality and the diversity of the potential learners to the quality of the collaboration for topological collaborative clustering algorithms based on the learning of a Self-Organizing Map (SOM). Experimental analysis on real data-sets showed that the diversity between learners impact the quality of the collaboration. We also showed that some internal indexes of quality are a good estimator of the increase of quality due to the collaboration.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 2; 149-165
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mathematical model of architecture and learning processes of artificial neural networks
Autorzy:
Bielecki, A.
Powiązania:
https://bibliotekanauki.pl/articles/1931575.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
artificial neural networks
neuron
learning process
topological conjugacy
gradient dynamical system
Euler method
Opis:
A mathematical model of architecture and learning processes of multilayer artificial neural netwoks is discussed in the paper. Dynamical systems theory is used to describe the learning precess of networks consisting of linear, weakly nonlinear and nonlinear neurons. Conjugacy between a gradient dynamical system with a constant time step and a cascade generated by its Euler method theorem is applied as well.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 1; 93-114
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies