Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "stochastic optimization algorithm" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Surrogate synthesis of excitation systems for frame tangential eddy current probes
Autorzy:
Halchenko, Volodymir Yakovych
Trembovetska, Ruslana Volodymyrivna
Tychkov, Volodymir Volodymyrovych
Powiązania:
https://bibliotekanauki.pl/articles/1955174.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
additive neural network regression
eddy current probe
stochastic optimization algorithm
surrogate optimization
uniform eddy current density distribution
velocity effect
addytywna regresja sieci neuronowej
sonda prądów wirowych
algorytm optymalizacji stochastycznej
optymalizacja zastępcza
równomierny rozkład gęstości prądów wirowych
efekt prędkości
Opis:
Existing scientific studies devoted to the design of eddy-current probes with a priori given configuration of the electromagnetic excitation field, which provide a uniform eddy current density distribution, consider a wide class of such, but are limited to the case when the probe is stationary relative to the testing object. Therefore, the actual problem is the synthesis of moving tangential eddy current probes with a frame excitation system that provides a uniform eddy current density distribution in the testing object, the solution of which is proposed in this study. A mathematical method for nonlinear surrogate synthesis of excitation systems for frame moving tangential surface eddy current probes, which implements a uniform eddy current density distribution of the testing zone object, is proposed. A metamodel of the volumetric structure of the excitation system of the frame tangential eddy current probe, applied in the process of surrogate optimal parametric synthesis, has been created. The examples of nonlinear synthesis of excitation systems using modern metaheuristic stochastic algorithms for finding the global extremum are considered. The numerical results of the obtained solutions of the problems are presented. The efficiency of the synthesized structures of excitation systems in comparison with classical analogs is shown on the graphs of the eddy current density distribution on the object surface in the testing zone.
Źródło:
Archives of Electrical Engineering; 2021, 70, 4; 743-757
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Short Introduction to Stochastic Optimization
Autorzy:
Ombach, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/1373633.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Tematy:
global optimization
stochastic algorithm
random search
convergence of metaheuristics
Opis:
We present some typical algorithms used for finding global minimum/ maximum of a function defined on a compact finite dimensional set, discuss commonly observed procedures for assessing and comparing the algorithms’ performance and quote theoretical results on convergence of a broad class of stochastic algorithms.
Źródło:
Schedae Informaticae; 2014, 23; 9-20
0860-0295
2083-8476
Pojawia się w:
Schedae Informaticae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stochastic fractal based multiobjective fruit fly optimization
Autorzy:
Zuo, C.
Wu, L.
Zeng, Z. F.
Wei, H. L.
Powiązania:
https://bibliotekanauki.pl/articles/330026.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
multiobjective optimization
fruit fly optimization algorithm
stochastic fractal
optymalizacja wielokryterialna
algorytm optymalizacji
fraktal stochastyczny
Opis:
The fruit fly optimization algorithm (FOA) is a global optimization algorithm inspired by the foraging behavior of a fruit fly swarm. In this study, a novel stochastic fractal model based fruit fly optimization algorithm is proposed for multiobjective optimization. A food source generating method based on a stochastic fractal with an adaptive parameter updating strategy is introduced to improve the convergence performance of the fruit fly optimization algorithm. To deal with multiobjective optimization problems, the Pareto domination concept is integrated into the selection process of fruit fly optimization and a novel multiobjective fruit fly optimization algorithm is then developed. Similarly to most of other multiobjective evolutionary algorithms (MOEAs), an external elitist archive is utilized to preserve the nondominated solutions found so far during the evolution, and a normalized nearest neighbor distance based density estimation strategy is adopted to keep the diversity of the external elitist archive. Eighteen benchmarks are used to test the performance of the stochastic fractal based multiobjective fruit fly optimization algorithm (SFMOFOA). Numerical results show that the SFMOFOA is able to well converge to the Pareto fronts of the test benchmarks with good distributions. Compared with four state-of-the-art methods, namely, the non-dominated sorting generic algorithm (NSGA-II), the strength Pareto evolutionary algorithm (SPEA2), multi-objective particle swarm optimization (MOPSO), and multiobjective self-adaptive differential evolution (MOSADE), the proposed SFMOFOA has better or competitive multiobjective optimization performance.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 2; 417-433
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
DSSA+: distributed collision avoidance algorithm in an environment where both course and speed changes are allowed
Autorzy:
Hirayama, K.
Miyake, K.
Shiotani, T.
Okimoto, T.
Powiązania:
https://bibliotekanauki.pl/articles/116483.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
collision avoidance
collision avoidance algorithm
vessel course changes
vessel speed changes
Distributed Stochastic Search Algorithm (DSSA)
colregs
ARPA
Distributed Constraint Optimization Problem (DCOP)
Opis:
Distributed Stochastic Search Algorithm (DSSA) is one of state-of-the-art distributed algorithms for the ship collision avoidance problem. In DSSA, whenever a ship encounters with any number of other ships (neighboring ships), she will select her course with a minimum cost after coordinating their decisions with her neighboring ships. The original DSSA assumes that ships can change only their courses while keeping their speed considering kinematic properties of ships in general. However, considering future possibilities to address more complex situations that may cause ship collision or to deal with collision of other vehicles (such as mobile robots or drones), the options of speed changes are necessary for DSSA to make itself more flexible and extensive. In this paper, we present DSSA+, as a generalization of DSSA, in which speed change are naturally incorporated as decision variables in the original DSSA. Experimental evaluations are provided to show how powerful this generalization is.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 1; 117-123
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies