Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "positive rank" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Factorization of Nonnegative Matrices by the Use of Elementary Operation
Autorzy:
Kaczorek, T.
Powiązania:
https://bibliotekanauki.pl/articles/386810.pdf
Data publikacji:
2012
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
faktoryzacja
nieujemna macierz
procedura
obliczanie
factorization
nonnegative matrix
positive rank
procedure
computation
Opis:
A method based on elementary column and row operations of the factorization of nonnegative matrices is proposed. It is shown that the nonnegative matrix R×( ? ) has positive full column rank if and only if it can be transformed to a matrix with cyclicstructure. A procedure for computation of nonnegative matrices ? R ×, ? R × ( ? rank (,)) satisfying = is proposed.
Źródło:
Acta Mechanica et Automatica; 2012, 6, 4; 15-18
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stability and stabilization of positive linear dynamical systems: new equivalent conditions and computations
Autorzy:
Yang, H.
Hu, Y.
Powiązania:
https://bibliotekanauki.pl/articles/201932.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
positive linear systems
stability
stabilization
linear inequalities systems
consistency
I-rank
Opis:
New equivalent conditions of the asymptotical stability and stabilization of positive linear dynamical systems are investigated in this paper. The asymptotical stability of the positive linear systems means that there is a solution for linear inequalities systems. New necessary and sufficient conditions for the existence of solutions of the linear inequalities systems as well as the asymptotical stability of the linear dynamical systems are obtained. New conditions for the stabilization of the resultant closed-loop systems to be asymptotically stable and positive are also presented. Both the stability and the stabilization conditions can be easily checked by the so-called I-rank of a matrix and by solving linear programming (LP). The proposed LP has compact form and is ready to be implemented, which can be considered as an improvement of existing LP methods. Numerical examples are provided in the end to show the effectiveness of the proposed method.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2020, 68, 2; 307-315
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A linear programming based analysis of the CP-rank of completely positive matrices
Autorzy:
Li, Y.
Kummert, A.
Frommer, A.
Powiązania:
https://bibliotekanauki.pl/articles/907323.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
macierz pozytywna
programowanie liniowe
algorytm Simplex
completely positive matrices
cp-rank
linear programming
simplex algorithm
basic feasible solution
pivot process
Opis:
A real matrix A is said to be completely positive (CP) if it can be decomposed as A= B BT, where the real matrix B has exclusively non-negative entries. Let k be the rank of A and Phik the least possible number of columns of the matrix B, the so-called completely positive rank (cp-rank) of A. The present work is devoted to a study of a general upper bound for the cp-rank of an arbitrary completely positive matrix A and its dependence on the ordinary rank k. This general upper bound of the cp-rank has been proved to be at most k(k + 1)/2. In a recent pioneering work of Barioli and Berman it was slightly reduced by one, which means that Phik \leq k(k + 1)/2-1 holds for k \geq 2. An alternative constructive proof of the same result is given in the present paper based on the properties of the simplex algorithm known from linear programming. Our proof illuminates complete positivity from a different point of view. Discussions concerning dual cones are not needed here. In addition to that, the proof is of constructive nature, i.e. starting from an arbitrary decomposition A= B1 B1T (B1\geq 0) a new decomposition A= B2 B2T (B2\geq 0) can be generated in a constructive manner, where the number of column vectors of B2 does not exceed k(k + 1)/2-1. This algorithm is based mainly on the well-known techniques stemming from linear programming, where the pivot step of the simplex algorithm plays a key role.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 1; 25-31
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies