Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "particle swarm optimization algorithm" wg kryterium: Temat


Tytuł:
Optimization of Square-shaped Bolted Joints Based on Improved Particle Swarm Optimization Algorithm
Autorzy:
Chen, Kui
Yang, Cheng
Zhao, Yongsheng
Niu, Peng
Niu, NaNa
Hongchao, Wu
Powiązania:
https://bibliotekanauki.pl/articles/27312779.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
particle swarm optimization algorithm
bolt connection
bolted joint
fractal theory
Opis:
The bolted joint is widely used in heavy-duty CNC machine tools, which has huge influence on working precision and overall stiffness of CNC machine. The process parameters of group bolt assembly directly affect the stiffness of the connected parts. The dynamic model of bolted joints is established based on the fractal theory, and the overall stiffness of joint surface is calculated. In order to improve the total stiffness of bolted assembly, an improved particle swarm optimization algorithm with combination of time-varying weights and contraction factor is proposed. The input parameters are preloading of bolts, fractal dimension, roughness, and object thickness. The main goal is to maximize the global rigidity. The optimization results show that improved algorithm has better convergence, faster calculation speed, preferable results, and higher optimization performance than standard particle swarm optimization algorithm. Moreover, the global rigidity optimization is achieved.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 3; art. no. 168487
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of a Predictive PID Controller Using Particle Swarm Optimization
Autorzy:
Mustafa, Norhaida
Hashim, Fazida Hanim
Powiązania:
https://bibliotekanauki.pl/articles/1844451.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
proportional integral derivative controller
particle swarm optimization (PSO) algorithm
optimization
predictive PID
Opis:
The proportional-integral-derivative (PID) controller is widely used in various industrial applications such as process control, motor drives, magnetic and optical memory, automotive, flight control and instrumentation. PID tuning refers to the generation of PID parameters (Kp, Ki, Kd) to obtain the optimum fitness value for any system. The determination of the PID parameters is essential for any system that relies on it to function in a stable mode. This paper proposes a method in designing a predictive PID controller system using particle swarm optimization (PSO) algorithm for direct current (DC) motor application. Extensive numerical simulations have been done using the Mathwork’s Matlab simulation environment. In order to gain full benefits from the PSO algorithm, the PSO parameters such as inertia weight, iteration number, acceleration constant and particle number need to be carefully adjusted and determined. Therefore, the first investigation of this study is to present a comparative analysis between two important PSO parameters; inertia weight and number of iteration, to assist the predictive PID controller design. Simulation results show that inertia weight of 0.9 and iteration number 100 provide a good fitness achievement with low overshoot and fast rise and settling time. Next, a comparison between the performance of the DC motor with PID-PSO, with PID of gain 1, and without PID were also discussed. From the analysis, it can be concluded that by tuning the PID parameters using PSO method, the best gain in performance may be found. Finally, when comparing between the PID-PSO and its counterpart, the PI-PSO, the PID-PSO controller gives better performance in terms of robustness, low overshoot (0.005%), low minimum rise time (0.2806 seconds) and low settling time (0.4326 seconds).
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 4; 737-743
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling of Curvature of the Railway Track Geometrical Layout Using Particle Swarm Optimization
Autorzy:
Palikowska, Katarzyna Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/504485.pdf
Data publikacji:
2014
Wydawca:
Międzynarodowa Wyższa Szkoła Logistyki i Transportu
Tematy:
Particle Swarm Optimization algorithm cubic C-Bezier curve
curvature of the railway track layout dynamic interactions
transition curve
Opis:
A method of railway track geometrical layout design, based on an application of cubic C-Bezier curves for describing the layout curvature is presented in the article. The control points of a cubic C-Bezier curve are obtained in an optimization process carried out using Particle Swarm Optimization algorithm. The optimization criteria are based on the evaluation of the dynamic interactions and satisfaction of geometrical design requirements.
Źródło:
Logistics and Transport; 2014, 21, 1; 73-82
1734-2015
Pojawia się w:
Logistics and Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting and minimizing the blasting cost in limestone mines using a combination of gene expression programming and particle swarm optimization
Autorzy:
Bastami, Reza
Bazzazi, Abbas Aghajani
Shoormasti, Hadi Hamidian
Ahangari, Kaveh
Powiązania:
https://bibliotekanauki.pl/articles/1853861.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
kopalnia wapienia
wybuch detonacyjny
regresja nieliniowa
blasting cost
limestone mine
gene expression programming
non-linear multivariate regression
particle swarm optimization algorithm
environmental impacts
Opis:
Blasting cost prediction and optimization is of great importance and significance to achieve optimal fragmentation through controlling the adverse consequences of the blasting process. By gathering explosive data from six limestone mines in Iran, the present study aimed to develop a model to predict blasting cost, by gene expression programming method. The model presented a higher correlation coefficient (0.933) and a lower root mean square error (1088) comparing to the linear and nonlinear multivariate regression models. Based on the sensitivity analysis, spacing and ANFO value had the most and least impact on blasting cost, respectively. In addition to achieving blasting cost equation, the constraints such as frag-mentation, fly rock, and back break were considered and analyzed by the gene expression programming method for blasting cost optimization. The results showed that the ANFO value was 9634 kg, hole dia-meter 76 mm, hole number 398, hole length 8.8 m, burden 2.8 m, spacing 3.4 m, hardness 3 Mhos, and uniaxial compressive strength 530 kg/cm2 as the blast design parameters, and blasting cost was obtainedas 6072 Rials/ton, by taking into account all the constraints. Compared to the lowest blasting cost among the 146-research data (7157 Rials/ton), this cost led to a 15.2% reduction in the blasting cost and optimal control of the adverse consequences of the blasting process.
Źródło:
Archives of Mining Sciences; 2020, 65, 4; 835-850
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Comparative Study of PID Controller Tuning Using GA, EP, PSO and ACO
Autorzy:
Nagaraj, B.
Vijayakumar, P.
Powiązania:
https://bibliotekanauki.pl/articles/384767.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
ant colony algorithm
evolutionary program
genetic algorithm particle swarm optimization and soft computing
Opis:
Proportional - Integral - Derivative control schemes continue to provide the simplest and effective solutions to most of the control engineering applications today. How ever PID controller are poorly tuned in practice with most of the tuning done manually which is difficult and time consuming. This article comes up with a hybrid approach involving Genetic Algorithm (GA), Evolutionary Pro gramming (EP), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). The proposed hybrid algorithm is used to tune the PID parameters and its per formance has been compared with the conventional me thods like Ziegler Nichols and Cohen Coon method. The results obtained reflect that use of heuristic algorithm based controller improves the performance of process in terms of time domain specifications, set point tracking, and regulatory changes and also provides an optimum stability. Speed control of DC motor process is used to assess the efficacy of the heuristic algorithm methodology
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2011, 5, 2; 42-48
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bainite transformation time model optimization for Austempered Ductile Iron with the use of heuristic algorithms
Autorzy:
Olejarczyk-Wożeńska, Izabela
Opaliński, Andrzej
Mrzygłód, Barbara
Regulski, Krzysztof
Kurowski, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/29520068.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
heuristic optimization
bainite
ADI
Particle Swarm Optimization
Evolutionary Optimization Algorithm
Opis:
The paper presents the application of heuristic optimization methods in identifying the parameters of a model for bainite transformation time in ADI (Austempered Ductile Iron). Two algorithms were selected for parameter optimization – Particle Swarm Optimization and Evolutionary Optimization Algorithm. The assumption of the optimization process was to obtain the smallest normalized mean square error (objective function) between the time calculated on the basis of the identified parameters and the time derived from the experiment. As part of the research, an analysis was also made in terms of the effectiveness of selected methods, and the best optimization strategies for the problem to be solved were selected on their basis.
Źródło:
Computer Methods in Materials Science; 2022, 22, 3; 125-136
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Function optimization using metaheuristics
Autorzy:
Pilski, M.
Seredyński, F.
Powiązania:
https://bibliotekanauki.pl/articles/92887.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
particle swarm optimization (PSO)
artificial immune system
genetic algorithm
function optimization
Opis:
The paper presents the results of comparison of three metaheuristics that currently exist in the problem of function optimization. The first algorithm is Particle Swarm Optimization (PSO) - the algorithm has recently emerged. The next one is based on a paradigm of Artificial Immune System (AIS). Both algorithms are compared with Genetic Algorithm (GA). The algorithms are applied to optimize a set of functions well known in the area of evolutionary computation. Experimental results show that it is difficult to unambiguously select one best algorithm which outperforms other tested metaheuristics.
Źródło:
Studia Informatica : systems and information technology; 2006, 1(7); 77-91
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of electric and magnetic field intensities in proximity of power lines using genetic and particle swarm algorithms
Autorzy:
Król, K.
Machczyński, W.
Powiązania:
https://bibliotekanauki.pl/articles/141588.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
power line
electric field
magnetic field
optimization
genetic algorithm
particle swarm algorithm
Opis:
The paper presents optimization of power line geometrical parameters aimed to reduce the intensity of the electric field and magnetic field intensity under an overhead power line with the use of a genetic algorithm (AG) and particle swarm optimization (PSO). The variation of charge distribution along the conductors as well as the sag of the overhead line and induced currents in earth wires were taken into account. The conductor sag was approximated by a chain curve. The charge simulation method (CSM) and the method of images were used in the simulations of an electric field, while a magnetic field were calculated using the Biot–Savart law. Sample calculations in a three-dimensional system were made for a 220 kV single – circuit power line. A comparison of the used optimization algorithms was made.
Źródło:
Archives of Electrical Engineering; 2018, 67, 4; 829-843
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the efficiency of population-based optimization in finding best parameters for RGB-D visual odometry
Autorzy:
Kostusiak, Aleksander
Skrzypczyński, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/384397.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
particle swarm optimization (PSO)
evolutionary algorithm
visual odometry
RGB-D
Opis:
Visual odometry estimates the transformations between consecutive frames of a video stream in order to recover the camera’s trajectory. As this approach does not require to build a map of the observed environment, it is fast and simple to implement. In the last decade RGBD cameras proliferated in roboTIcs, being also the sensors of choice for many practical visual odometry systems. Although RGB-D cameras provide readily available depth images, that greatly simplify the frame-to-frame transformations computaTIon, the number of numerical parameters that have to be set properly in a visual odometry system to obtain an accurate trajectory estimate remains high. Whereas seƫng them by hand is certainly possible, it is a tedious try-and-error task. Therefore, in this article we make an assessment of two population-based approaches to parameter opTImizaTIon, that are for long time applied in various areas of robotics, as means to find best parameters of a simple RGB-D visual odometry system. The optimization algorithms investigated here are particle swarm optimization and an evolutionary algorithm variant. We focus on the optimization methods themselves, rather than on the visual odometry algorithm, seeking an efficient procedure to find parameters that minimize the estimated trajectory errors. From the experimental results we draw conclusions as to both the efficiency of the optimization methods, and the role of particular parameters in the visual odometry system.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2019, 13, 2; 5-14
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of a Superconducting Antenna Integrated with a Diplexer for Radio-Astronomy Applications
Autorzy:
Donelli, M.
Febvre, P.
Powiązania:
https://bibliotekanauki.pl/articles/309365.pdf
Data publikacji:
2014
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
diplexer
microwave antenna
optimization techniques
particle swarm algorithm
radio astronomy
Opis:
This paper presents the design of a compact frontend diplexer for radio-astronomy applications based on a self complementary Bow-tie antenna, a 3 dB T-junction splitter and two pass-band fractal lters. The whole diplexer structure has been optimized by using an evolutionary algorithm. In particular the problem of the diplexer design is recast into an optimization one by dening a suitable cost function which is then minimized by mean of an evolutionary algorithm namely the Particle Swarm Optimization (PSO). An X band diplexer prototype was fabricated and assessed demonstrating a good agreement between numerical and experimental results.
Źródło:
Journal of Telecommunications and Information Technology; 2014, 3; 113-118
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm
Autorzy:
Dziwiński, Piotr
Bartczuk, Łukasz
Paszkowski, Józef
Powiązania:
https://bibliotekanauki.pl/articles/1837533.pdf
Data publikacji:
2020
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
hybrid methods
Particle Swarm Optimization
Genetic Algorithm
fuzzy systems
multimodal function
Opis:
The social learning mechanism used in the Particle Swarm Optimization algorithm allows this method to converge quickly. However, it can lead to catching the swarm in the local optimum. The solution to this issue may be the use of genetic operators whose random nature allows them to leave this point. The degree of use of these operators can be controlled using a neuro-fuzzy system. Previous studies have shown that the form of fuzzy rules should be adapted to the fitness landscape of the problem. This may suggest that in the case of complex optimization problems, the use of different systems at different stages of the algorithm will allow to achieve better results. In this paper, we introduce an auto adaptation mechanism that allows to change the form of fuzzy rules when solving the optimization problem. The proposed mechanism has been tested on benchmark functions widely adapted in the literature. The results verify the effectiveness and efficiency of this solution.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2020, 10, 2; 95-111
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling Microcystis Cell Density in a Mediterranean Shallow Lake of Northeast Algeria (Oubeira Lake), Using Evolutionary and Classic Programming
Autorzy:
Arif, Salah
Djellal, Adel
Djebbari, Nawel
Belhaoues, Saber
Touati, Hassen
Guellati, Fatma Zohra
Bensouilah, Mourad
Powiązania:
https://bibliotekanauki.pl/articles/2174666.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
microcystis cell density
Multiple Linear Regression
Support Vector Machine
Particle Swarm Optimization
Genetic Algorithm
Bird Swarm Algorithm
Opis:
Caused by excess levels of nutrients and increased temperatures, freshwater cyanobacterial blooms have become a serious global issue. However, with the development of artificial intelligence and extreme learning machine methods, the forecasting of cyanobacteria blooms has become more feasible. We explored the use of multiple techniques, including both statistical [Multiple Regression Model (MLR) and Support Vector Machine (SVM)] and evolutionary [Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Bird Swarm Algorithm (BSA)], to approximate models for the prediction of Microcystis density. The data set was collected from Oubeira Lake, a natural shallow Mediterranean lake in the northeast of Algeria. From the correlation analysis of ten water variables monitored, six potential factors including temperature, ammonium, nitrate, and ortho-phosphate were selected. The performance indices showed; MLR and PSO provided the best results. PSO gave the best fitness but all techniques performed well. BSA had better fitness but was very slow across generations. PSO was faster than the other techniques and at generation 20 it passed BSA. GA passed BSA a little further, at generation 50. The major contributions of our work not only focus on the modelling process itself, but also take into consideration the main factors affecting Microcystis blooms, by incorporating them in all applied models.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 2; 31--68
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance Comparison of Optimization Methods for Flat-Top Sector Beamforming in a Cellular Network
Autorzy:
Nandi, Pampa
Roy, Jibendu Sekhar
Powiązania:
https://bibliotekanauki.pl/articles/2142316.pdf
Data publikacji:
2022
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
flat-top sector beam
particle swarm optimization
real-coded genetic algorithm
Opis:
The flat-top radiation pattern is necessary to form an appropriate beam in a sectored cellular network and to pro vide users with best quality services. The flat-top pattern offers sufficient power and allows to minimize spillover of signal to adjacent sectors. The flat-top sector beam pattern is relied upon In sectored cellular networks, in multiple-input multiple-output (MIMO) systems and ensures a nearly constant gain in the desired cellular sector. This paper presents a comparison of such optimization techniques as real-coded genetic algorithm (RGA) and particle swarm optimization (PSO), used in cellular networks in order to achieve optimum flat-top sector patterns. The individual parameters of flat-top sector beams, such as cellular coverage, ripples in the flat-top beam, spillover of radiation to the adjacent sectors and side lobe level (SLL) are investigated through optimization performed for 40◦ and 60◦ sectors. These parameters are used to compare the performance of the optimized RGA and PSO algorithms. Overall, PSO outperforms the RGA algorithm.
Źródło:
Journal of Telecommunications and Information Technology; 2022, 3; 39--46
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the hybridization of the artificial Bee Colony and Particle Swarm Optimization Algorithms
Autorzy:
El-Abd, M.
Powiązania:
https://bibliotekanauki.pl/articles/91658.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Artificial Bee Colony Algorithm
ABC
particle swarm optimization (PSO)
PSO
hybridization
hybrid algorithm
CEC05
Opis:
In this paper we investigate the hybridization of two swarm intelligence algorithms; namely, the Artificial Bee Colony Algorithm (ABC) and Particle Swarm Optimization (PSO). The hybridization technique is a component-based one, where the PSO algorithm is augmented with an ABC component to improve the personal bests of the particles. Three different versions of the hybrid algorithm are tested in this work by experimenting with different selection mechanisms for the ABC component. All the algorithms are applied to the well-known CEC05 benchmark functions and compared based on three different metrics, namely, the solution reached, the success rate, and the performance rate.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 2; 147-155
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytmy stadne w problemach optymalizacji
Swarm Algorithms in Optimization Problems
Autorzy:
Filipowicz, B.
Kwiecień, J.
Powiązania:
https://bibliotekanauki.pl/articles/274567.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
optymalizacja nieliniowa
algorytm PSO
algorytm pszczeli
algorytm świetlika
nonlinear optimization
particle swarm optimization (PSO)
bee algorithm
firefly algorithm
Opis:
W artykule przedstawiono zastosowanie algorytmu optymalizacji rojem cząstek, algorytmu pszczelego i algorytmu świetlika do wyznaczenia optymalnego rozwiązania wybranych testowych funkcji ciągłych. Przedstawiono i porównano wyniki badań dla funkcji Rosenbrocka, Rastrigina i de Jonga.
This paper presents particle swarm optimization, bee algorithm and firefly algorithm, used for optimal solution of selected continuous well-known functions. Results of these algorithms are compared to each other on Rosenbrock, Rastrigin and de Jong functions.
Źródło:
Pomiary Automatyka Robotyka; 2011, 15, 12; 152-157
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies