Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multifocus image fusion" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Quantum-inspired particle swarm optimization algorithm with performance evaluation of fused images
Autorzy:
Le, Z
Xinman, Z.
Xuebin, X
Dong, W.
Jie, L.
Yang, L.
Powiązania:
https://bibliotekanauki.pl/articles/174501.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
multifocus image fusion
quantum particle swarm optimization
perfect reconstruction
superior speed
Opis:
In order to improve and accelerate the speed of image integration, an optimal and intelligent method for multi-focus image fusion is presented in this paper. Based on particle swarm optimization and quantum theory, quantum particle swarm optimization (QPSO) intelligent search strategy is introduced in salience analysis of a contrast visual masking system, combined with the segmentation technique. The superiority of QPSO is quantum parallelism. It has stronger search ability and quicker convergence speed. When compared with other classical or novel fusion methods, several metrics for image definition are exploited to evaluate the performance of all the adopted methods objectively. Experiments are performed on both artificial multi-focus images and digital camera multi-focus images. The results show that QPSO algorithm is more efficient than non-subsampled contourlet transform, genetic algorithm, binary particle swarm optimization, etc. The simulation results demonstrate that QPSO is a satisfying image fusion method with high accuracy and high speed.
Źródło:
Optica Applicata; 2013, 43, 4; 679-691
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The automatic focus segmentation of multi-focus image fusion
Autorzy:
Hawari, K.
Ismail
Powiązania:
https://bibliotekanauki.pl/articles/2173548.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
ResNet50
multifocus image fusion
głęboka nauka
wieloogniskowa fuzja obrazu
Opis:
Multi-focus image fusion is a method of increasing the image quality and preventing image redundancy. It is utilized in many fields such as medical diagnostic, surveillance, and remote sensing. There are various algorithms available nowadays. However, a common problem is still there, i.e. the method is not sufficient to handle the ghost effect and unpredicted noises. Computational intelligence has developed quickly over recent decades, followed by the rapid development of multi-focus image fusion. The proposed method is multi-focus image fusion based on an automatic encoder-decoder algorithm. It uses deeplabV3+ architecture. During the training process, it uses a multi-focus dataset and ground truth. Then, the model of the network is constructed through the training process. This model was adopted in the testing process of sets to predict the focus map. The testing process is semantic focus processing. Lastly, the fusion process involves a focus map and multi-focus images to configure the fused image. The results show that the fused images do not contain any ghost effects or any unpredicted tiny objects. The assessment metric of the proposed method uses two aspects. The first is the accuracy of predicting a focus map, the second is an objective assessment of the fused image such as mutual information, SSIM, and PSNR indexes. They show a high score of precision and recall. In addition, the indexes of SSIM, PSNR, and mutual information are high. The proposed method also has more stable performance compared with other methods. Finally, the Resnet50 model algorithm in multi-focus image fusion can handle the ghost effect problem well.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; e140352, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies