Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "incomplete data sets" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
An improved comparison of three rough set approaches to missing attribute values
Autorzy:
Grzymala-Busse, J. W.
Grzymala-Busse, W. J.
Hippe, Z. S.
Rząsa, W.
Powiązania:
https://bibliotekanauki.pl/articles/969797.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
incomplete data sets
missing attribute values
approximations for incomplete data
LERS data mining system
MLEM2 algorithm
Opis:
In a previous paper three types of missing attribute values: lost values, attribute-concept values and "do not care" conditions were compared using six data sets. Since previous experimental results were affected by large variances due to conducting experiments on different versions of a given data set, we conducted new experiments, using the same pattern of missing attribute values for all three types of missing attribute values and for both certain and possible rules. Additionally, in our new experiments, the process of incremental replacing specified values by missing attribute values was terminated when entire rows of the data sets were full of missing attribute values. Finally, we created new, incomplete data sets by replacing the specified values starting from 5% of all attribute values, instead of 10% as in the previous experiments, with an increment of 5% instead of the previous increment of 10%. As a result, it is becoming more clear that the best approach to missing attribute values is based on lost values, with small difference between certain and possible rules, and that the worst approach is based on "do not care" conditions, certain rules. With our improved experimental setup it is also more clear that for a given data set the type of the missing attribute values should be selected individually.
Źródło:
Control and Cybernetics; 2010, 39, 2; 469-486
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
DFIS: A novel data filling approach for an incomplete soft set
Autorzy:
Qin, H.
Ma, X.
Herawan, T.
Zain, J. M.
Powiązania:
https://bibliotekanauki.pl/articles/331284.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zbiór rozmyty
napełnianie danych
soft sets
incomplete soft sets
data filling
association degree
Opis:
The research on incomplete soft sets is an integral part of the research on soft sets and has been initiated recently. However, the existing approach for dealing with incomplete soft sets is only applicable to decision making and has low forecasting accuracy. In order to solve these problems, in this paper we propose a novel data filling approach for incomplete soft sets. The missing data are filled in terms of the association degree between the parameters when a stronger association exists between the parameters or in terms of the distribution of other available objects when no stronger association exists between the parameters. Data filling converts an incomplete soft set into a complete soft set, which makes the soft set applicable not only to decision making but also to other areas. The comparison results elaborated between the two approaches through UCI benchmark datasets illustrate that our approach outperforms the existing one with respect to the forecasting accuracy.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 817-828
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies