Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "efficient algorithm" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Stochastic programming model for production planning with stochastic aggregate demand and spreadsheet-based solution heuristics
Autorzy:
Saadouli, Nasreddine
Powiązania:
https://bibliotekanauki.pl/articles/2100358.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
production planning
stochastic programming
efficient algorithm
decision-making
Opis:
By discretising the stochastic demand, a deterministic nonlinear programming formulation is developed. Then, a hybrid simulation-optimisation heuristic that capitalises on the nature of the problem is designed. The outcome is an evaluation problem that is efficiently solved using a spreadsheet model. The main contribution of the paper is providing production managers with a tractable formulation of the production planning problem in a stochastic environment and an efficient solution scheme. A key benefit of this approach is that it provides quick near-optimal solutions without requiring in-depth knowledge or significant investments in optimisation techniques and software.
Źródło:
Operations Research and Decisions; 2021, 31, 4; 117--127
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speeding-up convolutional neural networks: A survey
Autorzy:
Lebedev, V.
Lempitsky, V.
Powiązania:
https://bibliotekanauki.pl/articles/201708.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
convolutional neural networks
resource-efficient computation
algorithm optimization
splotowe sieci neuronowe
efektywne zasoby obliczeniowe
optymalizacja algorytmu
Opis:
Convolutional neural networks (CNN) have become ubiquitous in computer vision as well as several other domains, but the sheer size of the modern CNNs means that for the majority of practical applications, a significant speed up and compression are often required. Speeding-up CNNs therefore have become a very active area of research with multiple diverse research directions pursued by many groups in academia and industry. In this short survey, we cover several research directions for speeding up CNNs that have become popular recently. Specifically, we cover approaches based on tensor decompositions, weight quantization, weight pruning, and teacher-student approaches. We also review CNN architectures designed for optimal speed and briefly consider automatic architecture search.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 799-811
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies