Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "crossover operators" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Multi-combinative strategy to avoid premature convergence in genetically-generated fuzzy knowledge bases
Multikombinacyjna strategia unikania przedwczesnej konwergencji w genetycznie generowanych rozmytych bazach wiedzy
Autorzy:
Achiche, S.
Balazinski, M.
Baron, L.
Powiązania:
https://bibliotekanauki.pl/articles/281997.pdf
Data publikacji:
2004
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
artificial intelligence
fuzzy decision support system
fuzzy knowledge base
learning
premature convergence
genetic algorithm
crossover operators
Opis:
A growing number of industrial fields is concerned by complex and multiobjective problems. For this kind of problems, optimal decision making is critical. Decision support systems using fuzzy logic are often used to deal with complex and large decision making problems. However the main drawback is the need of an expert to manually construct the knowledge base. The use of genetic algorithms proved to be an effective way to solve this problem. Genetic algorithms model the life evolution strategy using the Darwin theory. A main problem in genetic algorithms is the premature convergence, and the last enhancements in order to solve this problem include new multi-combinative reproduction techniques. There are two principal ways to perform multi-combinative reproduction within a genetic algorithm, namely the Multi-parent Recombination, Multiple Crossover on Multiple Parents (MCMP); and the Multiple Crossover Per Couple (MCPC). Both techniques try to take the most of the genetic information contained in the parents. This paper explores the possibility to decrease premature convergence in a real/binary like coded genetic algorithm (RBCGA) used in automatic generation of fuzzy knowledge bases (FKBs). The RBCGA uses several crossover mechanisms applied to the same couple of parents. The crossover are also combined in different ways creating a multiple offspring from the same parent genes. The large family concept and the variation of the crossovers should introduce diversity and variation in otherwise prematurely converged populations and hence, keeping the search process active.
Rosnącej liczbie dziedzin, którymi zainteresowany jest przemysł, towarzyszą złożone zagadnienia wieloobiektowe. Dla takich zagadnień optymalne podejmowanie decyzji jest krytyczne. Często dla wsparcia procesu decyzyjnego w złożonych problemach stosuje się układy logiki rozmytej. Kłopotem pozostaje jednak potrzeba manualnego wygenerowania bazy wiedzy poprzez eksperta. Okazuje się, że pewnym rozwiązaniem tego problemu może być użycie algorytmów genetycznych. Algorytmy takie modelują zagadnienie ewolucyjne na podstawie teorii Darwina. Głównym problemem w algorytmach genetycznych jest przedwczesna konwergencja, której próby wyeliminowania oparto na strategii multikombinowanych technik reprodukcji. Występują zasadniczo dwie drogi realizacji techniki reprodukcji: Multiple Crossover on Multiple Parents (MCMP) oraz Multiple Crossover Per Couple (MCPC). Obydwie metody celują w wykorzystanie jak największej ilości informacji genetycznej od rodziców. W artykule zajęto się możliwością ograniczania przedwczesnej konwergencji w rzeczywistym/binarnym kodzie genetycznym (RBCGA) używanym w automatycznymgenerowaniu rozmytych baz wiedzy (FKBs). Algorytm RBCGA stosuje kilka mechanizmów krzyżowania genów w odniesieniu do tej samej pary rodziców. Mechanizmy te przeróżnie kombinowane pozwalają na wielokrotną kreację potomstwa od tej samej pary rodziców. Koncepcja dużej rodziny i różnicowanie krzyżowania powinny wprowadzić dywersyfikację nowogenerowanych pokoleń, które w przeciwnym razie szybko uległyby konwergencji. Zapobieżenie temu zjawisku poprzez strategię multikombinacyjną utrzymuje proces poszukiwania rozwiązania w stanie aktywnym.
Źródło:
Journal of Theoretical and Applied Mechanics; 2004, 42, 3; 417-444
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Supplementary crossover operator for genetic algorithms based on the center-of-gravity paradigm
Autorzy:
Angelov, P.
Powiązania:
https://bibliotekanauki.pl/articles/205842.pdf
Data publikacji:
2001
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm genetyczny
mutacja
środek bezwładności
center of gravity
crossover
genetic algorithms
mutation
selection operators
Opis:
A supplementary crossover operator for genetic algorithms (GA) is proposed in the paper. It performs specific breeding between the two fittest parental chromosomes. The new child chromosome is based on the center of gravity (CoG) paradigm, taking into account both the parental weights (measured by their fitness) and their actual value. It is designed to be used in combination with other crossover and mutation operators (it applies to the best fitted two parental chromosomes only) both in binary and real-valued (evolutionary) GA. Analytical proof of its ability to improve the result is provided for the simplest case of one variable and when the elitist selection strategy is used. The new operator is validated with a number of usually used numerical test functions as well as with a practical example of supply air temperature and flow rate scheduling in a hollow core ventilated slab thermal storage system. The tests indicate that it improves results (the speed of convergence as well as the final result) without a significant increase in computational expenses.
Źródło:
Control and Cybernetics; 2001, 30, 2; 159-176
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies