Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "air pollution forecasting" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Data mining methods for prediction of air pollution
Autorzy:
Siwek, K.
Osowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/330775.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
computational intelligence
feature selection
neural network
random forest
air pollution forecasting
inteligencja obliczeniowa
selekcja cech
sieć neuronowa
lasy losowe
zanieczyszczenie powietrza
Opis:
The paper discusses methods of data mining for prediction of air pollution. Two tasks in such a problem are important: generation and selection of the prognostic features, and the final prognostic system of the pollution for the next day. An advanced set of features, created on the basis of the atmospheric parameters, is proposed. This set is subject to analysis and selection of the most important features from the prediction point of view. Two methods of feature selection are compared. One applies a genetic algorithm (a global approach), and the other—a linear method of stepwise fit (a locally optimized approach). On the basis of such analysis, two sets of the most predictive features are selected. These sets take part in prediction of the atmospheric pollutants PM10, SO2, NO2 and O3. Two approaches to prediction are compared. In the first one, the features selected are directly applied to the random forest (RF), which forms an ensemble of decision trees. In the second case, intermediate predictors built on the basis of neural networks (the multilayer perceptron, the radial basis function and the support vector machine) are used. They create an ensemble integrated into the final prognosis. The paper shows that preselection of the most important features, cooperating with an ensemble of predictors, allows increasing the forecasting accuracy of atmospheric pollution in a significant way.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 2; 467-478
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie stężeń zanieczyszczeń powietrza w GOP-ie modelami statystycznymi
Prediction of air pollutants concentrations in GOP using statistical models
Autorzy:
Siewior, J.
Tumidajski, T.
Foszcz, D.
Niedoba, T.
Powiązania:
https://bibliotekanauki.pl/articles/1819572.pdf
Data publikacji:
2011
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
model statystyczny
zanieczyszczenie powietrza
GOP
prognozowanie zanieczyszczeń powietrza
forecasting of air pollution
statistical model
air pollution
Opis:
Propagację zanieczyszczeń powietrza można opisywać za pomocą modeli deterministycznych, wykorzystujących równania różniczkowe fizyki atmosfery lub modeli fenomenologicznych analizujących statystycznie zebrane dane pomiarowe. Zgodność obu typów modeli z danymi rzeczywistymi jest różna, zakres i sens ich stosowalności także są inne i wielokrotnie wybór modelu jest określony celem jego stosowania oraz posiadanym zbiorem danych. W przypadku analizy propagacji zanieczyszczeń w dużych aglomeracjach przemysłowych stosowanie modeli deterministycznych jest praktycznie niemożliwe ze względu na potrzeby w zakresie danych (charakterystyka źródeł topografii terenu, charakterystyk meteorologicznych itp.) i dlatego próbuje się wykorzystać fenomenologiczne podejście do problemu opisu propagacji z zastosowaniem różnych technik obliczeniowych - od prostych metod statystycznych do sieci neuronowych.
Predicting of pollutants concentrations is very crucial for big cities and industrial agglomerations. It allows introduction of possible preventive activities with purpose of prevention to accumulation of concentrations as well warning people of possible states being dangerous to health for people from risk group, i.e. elders, people with cardiovascular diseases or people with respiratory system diseases. Upper Silesian Industrial Region (GOP) is one of the most polluted regions in Poland. Because of the location of several important heavy industrial plants it is necessary to constantly monitor concentrations of various dust and gas pollutants in this area. The paper presents the possibilities of stochastic modeling of air pollutants on the basis of data collected by monitoring stations and their application to pollutants concentrations forecasting. The data from following heating seasons from monitoring station in Zabrze concerning SO2 concentrations was applied to the analysis. The obtained models were statistically evaluated. Efficient modeling of daily SO2 concentrations should be based on regressive models with weights as well on adaptive approach to concentrations modeling dependably on forecasted synoptic situations. Documented heuristically statistical models allow to state that at unambiguous synoptic situation distinguished by low temperatures and windless weather, average limit values of concentrations of pollutants are expected to be exceeded. It is a manifestation of the compatibility of models with reality. An example of this is smog in Cracow recorded before the end of 2010, at meteorological conditions described above. The use of statistical methods of description of measurement data from the station allows for more accurate interpretation and documentation of the existing quantitative and even qualitative dependencies, which is not provided by purely numerical methods of modeling and predicting (e.g. neural networks).
Źródło:
Rocznik Ochrona Środowiska; 2011, Tom 13; 1261-1274
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Air pollution forecasting model control
Autorzy:
Domańska, D.
Wojtylak, M.
Powiązania:
https://bibliotekanauki.pl/articles/333888.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
modele systemu rozmytego
liczby rozmyte
macierz rozmyta
rozmyta prognoza pogody
zanieczyszczenie powietrza
prognozowanie
fuzzy system models
fuzzy numbers
fuzzy matrix
fuzzy weather forecast
air pollution
forecasting
Opis:
In the paper we discuss the analysis of multidimensional data. We consider the relationship between them using a special fuzzy number form. Calculations are kept on set of actual and historical meteorological data. Our model using to forecast pollution concentrations is important in today because pollutions have very big influence on our life in particular pollutions PM10 (particulate matter less than 10 µm in diameter). The effects of inhaling particulate matter have been widely studied in humans and animals and include asthma, lung cancer, cardiovascular issues, and premature death. Because of the size of the particle, they can penetrate the deepest part of the lungs. In Air Pollution Forecasting Model for the chosen weather forecast we find similar weather forecasts. Next, we find real meteorological situations from the historical data which correspond to them and we create fuzzy numbers, that is, the fuzzy weather forecasts. Then we estimate the validity of the weather forecast on the basis of the historical data and its accuracy. We investigate it with the help of a set of indicators, which corresponds to the parameters of the weather forecast, using the similarities rule of the weather forecast to the meteorological situation, a proper distance and data analysis. This comprehensive analysis allows us to investigate the effectiveness of forecasting pollution concentrations, putting the dependence between particular attributes describing the weather forecast in order and proving the legitimacy of the applicable fuzzy numbers in air pollution forecasting. Models are created for data, which are measured and forecasting in Poland. By reason of this data our models are testing in real sets of data and effects are received in active system.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 14; 9-22
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies