Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "WEKA" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Machine learning for supporting irrigation decisions based on climatic water balance
Autorzy:
Treder, Waldemar
Klamkowski, Krzysztof
Wójcik, Katarzyna
Tryngiel-Gać, Anna
Powiązania:
https://bibliotekanauki.pl/articles/27312625.pdf
Data publikacji:
2023
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
apple tree
evapotranspiration
irrigation scheduling
machine learning
precipitation
WEKA software
Opis:
A machine learning model was developed to support irrigation decisions. The field research was conducted on ‘Gala’ apple trees. For each week during the growing seasons (2009-2013), the following parameters were determined: precipitation, evapotranspiration (Penman-Monteith formula), crop (apple) evapotranspiration, climatic water balance, crop (apple) water balance (AWB), cumulative climatic water balance (determined weekly, ∑CWB), cumulative apple water balance (∑AWB), week number from full bloom, and nominal classification variable: irrigation, no irrigation. Statistical analyses were performed with the use of the WEKA 3.9 application software. The attribute evaluator was performed using Correlation Attribute Eval with the Ranker Search Method. Due to its highest accuracy, the final analyses were performed using the WEKA classifier package with the J48graft algorithm. For each of the analysed growing seasons, different correlations were found between the water balance determined for apple trees and the actual water balance of the soil layer (10-30 cm). The model made correct decisions in 76.7% of the instances when watering was needed and in 87.7% of the instances when watering was not needed. The root of the classification tree was the AWB determined for individual weeks of the growing season. The high places in the tree hierarchy were occupied by the nodes defining the elapsed time of the growing season, the values of ∑CWB and ∑AWB.
Źródło:
Journal of Water and Land Development; 2023, 58; 25--30
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A visual mining based framework for classification accuracy estimation
Podstawy wizualnej eksploracji do szacowania dokładności klasyfikacji
Autorzy:
Arun, P. V.
Powiązania:
https://bibliotekanauki.pl/articles/145456.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
teledetekcja
klasyfikacja obrazu
wizualizacja
data mining
remote sensing
decision tree
image classification
visualization
Weka
Prefuse
Opis:
Classification techniques have been widely used in different remote sensing applications and correct classification of mixed pixels is a tedious task. Traditional approaches adopt various statistical parameters, however does not facilitate effective visualisation. Data mining tools are proving very helpful in the classification process. We propose a visual mining based frame work for accuracy assessment of classification techniques using open source tools such as WEKA and PREFUSE. These tools in integration can provide an efficient approach for getting information about improvements in the classification accuracy and helps in refining training data set. We have illustrated framework for investigating the effects of various resampling methods on classification accuracy and found that bilinear (BL) is best suited for preserving radiometric characteristics. We have also investigated the optimal number of folds required for effective analysis of LISS-IV images.
echniki klasyfikacji są szeroko wykorzystywane w różnych aplikacjach teledetekcyjnych, w których poprawna klasyfikacja pikseli stanowi poważne wyzwanie. Podejście tradycyjne wykorzystujące różnego rodzaju parametry statystyczne nie zapewnia efektywnej wizualizacji. Wielce obiecujące wydaje się zastosowanie do klasyfikacji narzędzi do eksploracji danych. W artykule zaproponowano podejście bazujące na wizualnej analizie eksploracyjnej, wykorzystujące takie narzędzia typu open source jak WEKA i PREFUSE. Wymienione narzędzia ułatwiają korektę pół treningowych i efektywnie wspomagają poprawę dokładności klasyfikacji. Działanie metody sprawdzono wykorzystując wpływ różnych metod resampling na zachowanie dokładności radiometrycznej i uzyskując najlepsze wyniki dla metody bilinearnej (BL).
Źródło:
Geodesy and Cartography; 2013, 62, 2; 113-121
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative evaluation of the different data mining techniques used for the medical database
Autorzy:
Kasperczuk, A.
Dardzińska, A.
Powiązania:
https://bibliotekanauki.pl/articles/386432.pdf
Data publikacji:
2016
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
data mining
classification
WEKA
J48
MLP
apriori
association rules
baza wiedzy medycznej
eksploracja danych
algorytm klasyfikacji
Opis:
Data mining is the upcoming research area to solve various problems. Classification and finding association are two main steps in the field of data mining. In this paper, we use three classification algorithms: J48 (an open source Java implementation of C4.5 algorithm), Multilayer Perceptron - MLP (a modification of the standard linear perceptron) and Naïve Bayes (based on Bayes rule and a set of conditional independence assumptions) of the Weka interface. These classifiers have been used to choose the best algorithm based on the conditions of the voice disorders database. To find association rules over transactional medical database first we use apriori algorithm for frequent item set mining. These two initial steps of analysis will help to create the medical knowledgebase. The ultimate goal is to build a model, which can improve the way to read and interpret the existing data in medical database and future data as well.
Źródło:
Acta Mechanica et Automatica; 2016, 10, 3; 233-238
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
CellProfiler and WEKA Tools: Image Analysis for Fish Erythrocytes Shape and Machine Learning Model Algorithm Accuracy Prediction of Dataset
Autorzy:
Talapatra, Soumendra Nath
Chaudhuri, Rupa
Ghosh, Subhasis
Powiązania:
https://bibliotekanauki.pl/articles/1193348.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Automatic image analysis
CellProfiler tool
Fish erythrocytes quantification
Machine learning algorithm
Model classifier accuracy
Shapes measurement
WEKA tool
Opis:
The first part of the study was detected the number of cells and measurement of shape of cells, cytoplasm, and nuclei in an image of Giemsa-stained of fish peripheral erythrocytes by using CellProfiler (CP, version 2.1.0) tool, an image analysis tool. In the second part, it was evaluated machine learning (ML) algorithm models viz. BayesNet (BN), NaiveBayes (NB), logistic regression (LR), Lazy.KStar (K*), decision tree (DT) J48, Random forest (RF) and Random tree (RT) in the WEKA tool (version 3.8.5) for the prediction of the accuracy of the dataset generated from an image. The CP predicts the numbers and individual cellular area shape (arbitrary unit) of cells, cytoplasm, and nuclei as primary, secondary, and tertiary object data in an image. The performance of model accuracy of studied ML algorithm classifications as per correctly and incorrectly classified instances, the highest values were observed in RF and RT followed by K*, LR, BN and DTJ48 and lowest in NB as per training and testing set of correctly classified instances. In case of performance accuracy of class for K value, the highest values were observed in RF and RT followed by K*, LR, BN and DTJ48 and lowest in NB while lowest values were obtained for mean absolute error (MAE) and root mean squared error (RMSE) in case of RT followed by RF, K*, LR, BN and DTJ48 and comparatively highest value in case of NB as per training and testing set. In conclusion, both tools performed well as an image to the dataset and obtained dataset to rich information through ML modelling and future study in WEKA tool can easily be analysed many biological big data to predict classifier accuracy.
Źródło:
World Scientific News; 2021, 154; 101-116
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research of the efficiency of the reach of fire services to accidents in the City of Kocaeli on the basis of statistical data for the years 2013-2020
Badanie skuteczności dotarcia służb pożarniczychdo wypadków w Kocaeli̇na podstawie danych statystycznych za lata 2013-2020
Autorzy:
Namli, Ömer Bora
Tyburek, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/41205961.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
testing fire brigade statistics
WEKA
fire brigade effectiveness
response time
computational intelligence
computational model
testowanie statystyk straży pożarnej
efektywności straży pożarnej
czas reakcji
inteligencja obliczeniowa
model obliczeniowy
Opis:
We use different methods to evalulate performance of our works, and always look for better method to do this. One of the most available methods to measure performance is using statistical datas. To do this, we have to be sure about our datas are sufficient or not and how much we can trust these data sets to measure performance. In this study we will test statistical data sets of Kocaeli Fire Brigade by using WEKA and its algorithms.
W badaniach użyto różnych metod ocen wyników prowadzonych badań poszukując jednocześnie lepszejmetody analizy. Jedną z najbardziej dostępnych metod pomiaru wydajności jest wykorzystanie danych statystycznych. Aby to zrobić, należy mieć pewność, czy analizowne dane są wystarczające, oraz w jakim spotniu możena ufać zbiorom danych w celu pomiaru wydajności. W tym badaniu przetestowano zestaw danych statystycznych Straży Pożarnej Kocaeli za pomocą WEKA i jej algorytmów klasyfikacyjnych.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2022, 14, 3; 5-12
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies