Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "U-Net" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Attention-based U-Net for image demoiréing
Autorzy:
Lehmann, Tomasz M.
Powiązania:
https://bibliotekanauki.pl/articles/2201228.pdf
Data publikacji:
2022
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Instytut Informatyki Technicznej
Tematy:
image demoiréing
computer vision
attention U-Net
cross-sampling
Opis:
Image demoiréing is a particular example of a picture restoration problem. Moiré is an interference pattern generated by overlaying similar but slightly offset templates. In this paper, we present a deep learning based algorithm to reduce moiré disruptions. The proposed solution contains an explanation of the cross-sampling procedure - the training dataset management method which was optimized according to limited computing resources. Suggested neural network architecture is based on Attention U-Net structure. It is an exceptionally effective model which was not proposed before in image demoiréing systems. The greatest improvement of this model in comparison to U-Net network is the implementation of attention gates. These additional computing operations make the algorithm more focused on target structures. We also examined three MSE and SSIM based loss functions. The SSIM index is used to predict the perceived quality of digital images and videos. A similar approach was applied in various computer vision areas. The author’s main contributions to the image demoiréing problem contain the use of the novel architecture for this task, innovative two-part loss function, and the untypical use of the cross-sampling training procedure.
Źródło:
Machine Graphics & Vision; 2022, 31, 1/4; 3--17
1230-0535
2720-250X
Pojawia się w:
Machine Graphics & Vision
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of high resolution satellite images using improved U-Net
Autorzy:
Wang, Yong
Zhang, Dongfang
Dai, Guangming
Powiązania:
https://bibliotekanauki.pl/articles/331235.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
satellite image classification
deep learning
U-net
spatial pyramid pooling
zdjęcia satelitarne
uczenie głębokie
Opis:
Satellite image classification is essential for many socio-economic and environmental applications of geographic information systems, including urban and regional planning, conservation and management of natural resources, etc. In this paper, we propose a deep learning architecture to perform the pixel-level understanding of high spatial resolution satellite images and apply it to image classification tasks. Specifically, we augment the spatial pyramid pooling module with image-level features encoding the global context, and integrate it into the U-Net structure. The proposed model solves the problem consisting in the fact that U-Net tends to lose object boundaries after multiple pooling operations. In our experiments, two public datasets are used to assess the performance of the proposed model. Comparison with the results from the published algorithms demonstrates the effectiveness of our approach.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 3; 399-413
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentation of cancer masses on breast ultrasound images using modified U-net
Segmentacja mas nowotworowych na obrazach ultrasonografii piersi z użyciem zmodyfikowanego modelu U-net
Autorzy:
Khallassi, Ihssane
El Yousfi Alaoui, My Hachem
Jilbab, Abdelilah
Powiązania:
https://bibliotekanauki.pl/articles/27315434.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
convolutional neural network
segmentation
u-net
residual neural network
konwolucyjna sieć neuronowa
segmentacja
rezydualna sieć neuronowa
Opis:
Breast cancer causes a huge number of women’s deaths every year. The accurate localization of a breast lesion is a crucial stage. The segmentation of breast ultrasound images participates in the improvement of the process of detection of breast anomalies. An automatic approach of segmentation of breast ultrasound images is presented in this paper, the proposed model is a modified u-net called Attention Residual U-net, designed to help radiologists in their clinical examination to determine adequately the limitation of breast tumors. Attention Residual U-net is a combination of existing models (Convolutional Neural Network U-net, the Attention Gate Mechanism and the Residual Neural Network). Public breast ultrasound images dataset of Baheya hospital in Egypt is used in this work. Dice coefficient, Jaccard index and Accuracy are used to evaluate the performance of the proposed model on the test set. Attention residual u-net can significantly give a dice coefficient = 90%, Jaccard index = 76% and Accuracy = 90%. The proposed model is compared with two other breast segmentation methods on the same dataset. The results show that the modified U-net model was able to achieve accurate segmentation of breast lesions in breast ultrasound images.
Każdego roku rak piersi powoduje ogromną liczbę zgonów kobiet. Dokładna lokalizacja zmiany piersi jest kluczowym etapem. Segmentacja obrazów ultrasonograficznych piersi przyczynia się do poprawy procesu wykrywania nieprawidłowości piersi. W tym artykule przedstawiono automatyczne podejście do segmentacji obrazów ultrasonograficznych piersi, proponowany model to zmodyfikowany U-net, nazwany Attention Residual U-net, zaprojektowany w celu wspomagania radiologów podczas badania klinicznego, w celu odpowiedniego określenia zasięgu guzów piersiowych. Attention Residual U-net jest połączeniem istniejących modeli (konwolucyjną siecią neuronową U-net, Attention Gate Mechanism i Residual Neural Network). W tym badaniu wykorzystano publiczny zbiór danych obrazów ultrasonograficznych piersi szpitala Baheya w Egipcie. Do oceny wydajności zaproponowanego modelu na zbiorze testowym wykorzystano współczynnik Dice'a, indeks Jaccarda i dokładność. Attention Residual U-net może znacznie przyczynić się do uzyskania współczynnika Dice'a równego 90%, indeksu Jaccarda równego 76% i dokładności równiej 90%. Proponowany model został porównany z dwoma innymi metodami segmentacji piersi na tym samym zbiorze danych. Wyniki pokazują, że zmodyfikowany model U-net był w stanie osiągnąć dokładną segmentację zmian piersiowych na obrazach ultrasonograficznych piersi.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 3; 11--15
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentation of bone structures with the use of deep learning techniques
Autorzy:
Krawczyk, Zuzanna
Starzyński, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2128158.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
semantic segmentation
U-net
FCN
ResNet
computed tomography
technika deep learning
głęboka nauka
segmentacja semantyczna
tomografia komputerowa
Opis:
The paper is focused on automatic segmentation task of bone structures out of CT data series of pelvic region. The authors trained and compared four different models of deep neural networks (FCN, PSPNet, U-net and Segnet) to perform the segmentation task of three following classes: background, patient outline and bones. The mean and class-wise Intersection over Union (IoU), Dice coefficient and pixel accuracy measures were evaluated for each network outcome. In the initial phase all of the networks were trained for 10 epochs. The most exact segmentation results were obtained with the use of U-net model, with mean IoU value equal to 93.2%. The results where further outperformed with the U-net model modification with ResNet50 model used as the encoder, trained by 30 epochs, which obtained following result: mIoU measure – 96.92%, “bone” class IoU – 92.87%, mDice coefficient – 98.41%, mDice coefficient for “bone” – 96.31%, mAccuracy – 99.85% and Accuracy for “bone” class – 99.92%.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e136751, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentation of bone structures with the use of deep learning techniques
Autorzy:
Krawczyk, Zuzanna
Starzyński, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2173574.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
semantic segmentation
U-net
FCN
ResNet
computed tomography
technika deep learning
głęboka nauka
segmentacja semantyczna
tomografia komputerowa
Opis:
The paper is focused on automatic segmentation task of bone structures out of CT data series of pelvic region. The authors trained and compared four different models of deep neural networks (FCN, PSPNet, U-net and Segnet) to perform the segmentation task of three following classes: background, patient outline and bones. The mean and class-wise Intersection over Union (IoU), Dice coefficient and pixel accuracy measures were evaluated for each network outcome. In the initial phase all of the networks were trained for 10 epochs. The most exact segmentation results were obtained with the use of U-net model, with mean IoU value equal to 93.2%. The results where further outperformed with the U-net model modification with ResNet50 model used as the encoder, trained by 30 epochs, which obtained following result: mIoU measure – 96.92%, “bone” class IoU – 92.87%, mDice coefficient – 98.41%, mDice coefficient for “bone” – 96.31%, mAccuracy – 99.85% and Accuracy for “bone” class – 99.92%.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e136751
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
U-Net based frames partitioning and volumetric analysis for kidney detection in tomographic images
Autorzy:
Les, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2173575.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
kidney detection
medical image processing
U-net
frames partitioning
volumetric analysis
wykrywanie nerek
przetwarzanie obrazu medycznego
partycjonowanie ramek
analiza objętościowa
Opis:
This work presents an automatic system for generating kidney boundaries in computed tomography (CT) images. This paper presents the main points of medical image processing, which are the parts of the developed system. The U-Net network was used for image segmentation, which is now widely used as a standard solution for many medical image processing tasks. An innovative solution for framing the input data has been implemented to improve the quality of the learning data as well as to reduce the size of the data. Precision-recall analysis was performed to calculate the optimal image threshold value. To eliminate false-positive errors, which are a common issue in segmentation based on neural networks, the volumetric analysis of coherent areas was applied. The developed system facilitates a fully automatic generation of kidney boundaries as well as the generation of a three-dimensional kidney model. The system can be helpful for people who deal with the analysis of medical images, medical specialists in medical centers, especially for those who perform the descriptions of CT examination. The system works fully automatically and can help to increase the accuracy of the performed medical diagnosis and reduce the time of preparing medical descriptions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137051
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
U-Net based frames partitioning and volumetric analysis for kidney detection in tomographic images
Autorzy:
Les, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2090740.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
kidney detection
medical image processing
U-net
frames partitioning
volumetric analysis
wykrywanie nerek
przetwarzanie obrazu medycznego
partycjonowanie ramek
analiza objętościowa
Opis:
This work presents an automatic system for generating kidney boundaries in computed tomography (CT) images. This paper presents the main points of medical image processing, which are the parts of the developed system. The U-Net network was used for image segmentation, which is now widely used as a standard solution for many medical image processing tasks. An innovative solution for framing the input data has been implemented to improve the quality of the learning data as well as to reduce the size of the data. Precision-recall analysis was performed to calculate the optimal image threshold value. To eliminate false-positive errors, which are a common issue in segmentation based on neural networks, the volumetric analysis of coherent areas was applied. The developed system facilitates a fully automatic generation of kidney boundaries as well as the generation of a three-dimensional kidney model. The system can be helpful for people who deal with the analysis of medical images, medical specialists in medical centers, especially for those who perform the descriptions of CT examination. The system works fully automatically and can help to increase the accuracy of the performed medical diagnosis and reduce the time of preparing medical descriptions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137051, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification and segmentation of periodontal cystfor digital dental diagnosis using deep learning
Autorzy:
Lakshmi, T. K.
Dheeba, J.
Powiązania:
https://bibliotekanauki.pl/articles/38700996.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
CNN
dental radiograph
deep learning
health care
machine transfer learning
periodontal cyst
predictive analytics
segmentation
U-Net
VGG16
rentgenowskie zdjęcie zębów
uczenie głębokie
opieka zdrowotna
uczenie się z transferu maszynowego
torbiel przyzębia
analityka predykcyjna
segmentacja
Opis:
The digital revolution is changing every aspect of life by simulating the ways humansthink, learn and make decisions. Dentistry is one of the major fields where subsets ofartificial intelligence are extensively used for disease predictions. Periodontitis, the mostprevalent oral disease, is the main focus of this study. We propose methods for classifyingand segmenting periodontal cysts on dental radiographs using CNN, VGG16, and U-Net.Accuracy of 77.78% is obtained using CNN, and enhanced accuracy of 98.48% is obtainedthrough transfer learning with VGG16. The U-Net model also gives encouraging results.This study presents promising results, and in the future, the work can be extended withother pre-trained models and compared. Researchers working in this field can develop novelmethods and approaches to support dental practitioners and periodontists in decision-making and diagnosis and use artificial intelligence to bridge the gap between humansand machines.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 2; 131-149
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies