Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Indonesia Throughflow" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Overview of Oceanic Eddies in Indonesia Seas Based on the Sea Surface Temperature and Sea Surface Height
Autorzy:
Purba, Noir P.
Faizal, Ibnu
Damanik, Finri S.
Rachim, Fadliyan R.
Mulyani, Putri G.
Powiązania:
https://bibliotekanauki.pl/articles/1031834.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Eddies
Indonesia Throughflow
Ocean Fronts
Water Mass
Opis:
One of the complexities of the ocean currents in the territorial waters of Indonesia is oceanic eddies form. Ocean eddy is one of the very crucial phenomena in the ocean due to its circulation and connection with the chemical and biological aspects in the water column. This study aimed to observe the distribution of oceanic eddies associated with the Sea Surface Temperature (SST) and Sea Surface Height (SSH) with the Automatic Eddy Detection (AED) method. The analysis included distribution and types correlated with seasons. The results showed that eddies occur in all regions in the Indonesian Seas except the Java Sea. In general, the occurrence of eddies every month does not differ significantly for both Ocean Cyclonic Eddies (OCE) and Ocean Anticyclonic Eddies (OAE). The total oceanic eddies in a year are around 1,149 events. A minimum radius of the ocean eddies found was about 5.08 km, and a maximum was around 386.76 km. Furthermore, the occurrence of OCE is mostly in locations that are almost the same as OAE. Both types of eddy are mostly in locations with the boundary of temperatures and the boundary of SSH. Several eddies exist every month and mostly change or move into other areas. Eddies in Indonesia seas are influenced by differences of SST and different SSH that form ocean currents. One of the complexities of the ocean currents in the territorial waters of Indonesia is oceanic eddies form. Ocean eddy is one of the very crucial phenomena in the ocean due to its circulation and connection with the chemical and biological aspects in the water column. This study aimed to observe the distribution of oceanic eddies associated with the Sea Surface Temperature (SST) and Sea Surface Height (SSH) with the Automatic Eddy Detection (AED) method. The analysis included distribution and types correlated with seasons. The results showed that eddies occur in all regions in the Indonesian Seas except the Java Sea. In general, the occurrence of eddies every month does not differ significantly for both Ocean Cyclonic Eddies (OCE) and Ocean Anticyclonic Eddies (OAE). The total oceanic eddies in a year are around 1,149 events. A minimum radius of the ocean eddies found was about 5.08 km, and a maximum was around 386.76 km. Furthermore, the occurrence of OCE is mostly in locations that are almost the same as OAE. Both types of eddy are mostly in locations with the boundary of temperatures and the boundary of SSH. Several eddies exist every month and mostly change or move into other areas. Eddies in Indonesia seas are influenced by differences of SST and different SSH that form ocean currents.
Źródło:
World Scientific News; 2020, 147; 166-178
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Marine Debris Pathway Across Indonesian Boundary Seas
Autorzy:
Purba, Noir P.
Faizal, Ibnu
Cordova, Muhammad R.
Abimanyu, Amarif
Afandi, Najma K. A.
Indriawan, Dena
Khan, Alexander M. A.
Powiązania:
https://bibliotekanauki.pl/articles/1839151.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
floating debris
Indonesia Throughflow
marine pollution
wind
ocean current
Opis:
The complex circulation for both atmospheric and ocean affects the pathways of floating marine debris (MD). The aim of this research was to define the MD trajectories in the Indonesian boundary seas. The Lagrangian particle method was applied with oceanographic factors and debris classes based on 1 to 3% windage class. The simulation was applied during the Northwest and Southeast Monsoon period. On the basis of the obtained findings, the debris trajectory patterns were indicated to vary in the two monsoons. In the northern part of Indonesia, all neighbouring countries were affected, especially those near the boundaries. In the southern part of Indonesia, most of the debris headed west towards the Indian Ocean. MD was mostly transported by the ocean currents and monsoonal wind and ended up in the coastal area. Some debris was also still floating in the open ocean after three months. This study concluded that marine litter not only polluted Indonesia water, but also the neighbouring countries.
Źródło:
Journal of Ecological Engineering; 2021, 22, 3; 82-98
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies