- Tytuł:
-
Prognozowanie trwałości środków technicznych z wykorzystaniem wielu wskaźników degradacji i zdarzeń awaryjnych w ujęciu modelu ciągłej przestrzeni stanów
Asset life prediction using multiple degradation indicators and failure events: a continuous state space model approach - Autorzy:
-
Zhou, Y.
Ma, L.
Mathew, J.
Sun, Y.
Wolff, R. - Powiązania:
- https://bibliotekanauki.pl/articles/301478.pdf
- Data publikacji:
- 2009
- Wydawca:
- Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
- Tematy:
-
prognozowanie trwałości środków
model degradacji
algorytm maksymalizacji wartości oczekiwanej
model przestrzeni stanów
asset life prediction
degradation model
expectation-maximisation algorithm
state space model - Opis:
-
Prognozowanie trwałości środków z wykorzystaniem wskaźników degradacji wiąże się z dwoma zagadnieniami praktycznymi:(1) identyfikacją progów niepewnego uszkodzenia dla wskaźników degradacji oraz (2) łączeniem licznych wskaźników degradacji otrzymanych na podstawie danych z monitorowania stanu. Model degradacji w przestrzeni stanów stanowi efektywne podejście do tych dwóch zagadnień. Jednakże dotychczasowe badania dotyczące tego modelu w dużej mierze przyjmują założenie dyskretnego czasu lub dyskretnych stanów, które wymaga równych odstępów między przeglądami lub dyskretyzacji ciągłych wskaźników degradacji. Aby uniknąć konieczności zakładania dyskretnego czasu i dyskretnych stanów, w niniejszej pracy zaproponowano model przestrzeni stanów oparty na procesie Gamma. Proces Gamma charakteryzuje własność monotoniczna rosnącą, która odpowiada nieodwracalnym procesom degradacji środków technicznych w trakcie jednego cyklu serwisowego. Własność monotoniczna rosnąca ułatwia również ustalenie funkcji prawdopodobieństwa, gdy brane są pod uwagę czasy uszkodzeń. W artykule sformułowano algorytmy estymacji parametrów oraz prognozowania czasu życia dla modelu przestrzeni stanów opartego na procesie Gamma. Dodatkowo określono metodę oceny efektywności wskaźników w modelowaniu degradacji. Proponowany model przestrzeni stanów oparty na procesie Gamma oraz jego algorytmy weryfikowano przy użyciu danych symulacyjnych oraz danych terenowych pozyskanych z przedsiębiorstwa zajmującego się ciekłym gazem ziemnym.
Two practical issues are involved in asset life prediction using degradation indicators: (1) identifying uncertain failure thresholds of degradation indicators and (2) fusing multiple degradation indicators extracted from condition monitoring data. The state space degradation model provides an effective approach to address these two issues. However, existing research on the state space degradation model largely adopts a discrete time or states assumption which requires equal inspection intervals or discretising continuous degradation indicators. To remove the discrete time and states assumptions, this paper proposes a Gamma-based state space model. The Gamma process has a monotonically increasing property that is consistent with the irreversible degradation processes of engineering assets within a single maintenance cycle. The monotonically increasing property also makes the establishment of the likelihood function more straightforward when failure times are considered. In this paper, parameter estimation and lifetime prediction algorithms for the Gamma-based state space model are developed. In addition, an effectiveness evaluation approach for indicators in degradation modelling is established. The proposed Gamma-based state space model and algorithms are validated using both simulated data and a field dataset from a liquefied natural gas company. - Źródło:
-
Eksploatacja i Niezawodność; 2009, 4; 72-81
1507-2711 - Pojawia się w:
- Eksploatacja i Niezawodność
- Dostawca treści:
- Biblioteka Nauki