Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Nizar, Imane" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Artificial neural network and energy budget method to predict daily evaporation of Boudaroua reservoir (northern Morocco)
Autorzy:
En-nkhili, Hicham
Nizar, Imane
Igouzal, Mohammed
Touazit, Azzeddin
Youness, Nizar
Etebaai, Issam
Powiązania:
https://bibliotekanauki.pl/articles/27312681.pdf
Data publikacji:
2023
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
artificial neural network
Boudaroua reservoir
energy budget
evaporation rate
meteorological data
Opis:
Evaporation is one of the main essential components of the hydrologic cycle. The study of this parameter has significant consequences for knowing reservoir level forecasts and water resource management. This study aimed to test the three artificial neural networks (feed-forward, Elman and nonlinear autoregressive network with exogenous inputs (NARX) models) and multiple linear regression to predict the rate of evaporation in the Boudaroua reservoir using the calculated values obtained from the energy budget method. The various combinations of meteorological data, including solar radiation, air temperature, relative humidity, and wind speed, are used for the training and testing of the model’s studies. The architecture that was finally chosen for three types of neural networks has the 4-10-1 structure, with contents of 4 neurons in the input layer, 10 neurons in the hidden layer and 1 neuron in the output layer. The calculated evaporation rate presents a typical annual cycle, with low values in winter and high values in summer. Moreover, air temperature and solar radiation were identified as meteorological variables that mostly influenced the rate of evaporation in this reservoir, with an annual average equal to 4.67 mm∙d-1. The performance evaluation criteria, including the coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) approved that all the networks studied were valid for the simulation of evaporation rate and gave better results than the multiple linear regression (MLR) models in the study area.
Źródło:
Journal of Water and Land Development; 2023, 57; 107--115
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies