Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mao, Yaping" wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
The Vertex-Rainbow Index of A Graph
Autorzy:
Mao, Yaping
Powiązania:
https://bibliotekanauki.pl/articles/31340818.pdf
Data publikacji:
2016-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex-coloring
connectivity
vertex-rainbow S-tree
vertex- rainbow index
Nordhaus-Gaddum type
Opis:
The k-rainbow index rxk(G) of a connected graph G was introduced by Chartrand, Okamoto and Zhang in 2010. As a natural counterpart of the k-rainbow index, we introduce the concept of k-vertex-rainbow index rvxk(G) in this paper. In this paper, sharp upper and lower bounds of rvxk(G) are given for a connected graph G of order n, that is, 0 ≤ rvxk(G) ≤ n − 2. We obtain Nordhaus-Gaddum results for 3-vertex-rainbow index of a graph G of order n, and show that rvx3(G) + rvx3(Ḡ) = 4 for n = 4 and 2 ≤ rvx3(G) + rvx3(Ḡ) ≤ n − 1 for n ≥ 5. Let t(n, k, ℓ) denote the minimal size of a connected graph G of order n with rvxk(G) ≤ ℓ, where 2 ≤ ℓ ≤ n − 2 and 2 ≤ k ≤ n. Upper and lower bounds on t(n, k, ℓ) are also obtained.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 3; 669-681
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphs with Large Generalized (Edge-)Connectivity
Autorzy:
Li, Xueliang
Mao, Yaping
Powiązania:
https://bibliotekanauki.pl/articles/31340594.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
(edge-)connectivity
Steiner tree
internally disjoint trees
edge-disjoint trees
packing
generalized (edge-)connectivity
Opis:
The generalized $k$-connectivity $ \kappa_k (G) $ of a graph $G$, introduced by Hager in 1985, is a nice generalization of the classical connectivity. Recently, as a natural counterpart, we proposed the concept of generalized $k$-edge-connectivity $ \lambda_k (G)$. In this paper, graphs of order $n$ such that $ \kappa_k (G) = n - k/2 - 1 $ and $ \lambda_k (G) = n - k/2 - 1 $ for even $k$ are characterized.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 931-958
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Steiner Wiener Index of A Graph
Autorzy:
Li, Xueliang
Mao, Yaping
Gutman, Ivan
Powiązania:
https://bibliotekanauki.pl/articles/31340916.pdf
Data publikacji:
2016-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
distance
Steiner distance
Wiener index
Steiner Wiener k- index
Opis:
The Wiener index $ W(G) $ of a connected graph $G$, introduced by Wiener in 1947, is defined as $ W(G) = \Sigma_{ u,v \in V(G) } d(u, v) $ where $ d_G(u, v) $ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least 2 and $ S \subseteq V (G) $, the Steiner distance $d(S)$ of the vertices of $S$ is the minimum size of a connected subgraph whose vertex set is $S$. We now introduce the concept of the Steiner Wiener index of a graph. The Steiner k-Wiener index $ SW_k(G) $ of $ G $ is defined by $ \Sigma_{ S \subseteq V(G) \ |S| = k } \ d(S) $. Expressions for $ SW_k $ for some special graphs are obtained. We also give sharp upper and lower bounds of $ SW_k $ of a connected graph, and establish some of its properties in the case of trees. An application in chemistry of the Steiner Wiener index is reported in our another paper.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 455-465
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inverse Problem on the Steiner Wiener Index
Autorzy:
Li, Xueliang
Mao, Yaping
Gutman, Ivan
Powiązania:
https://bibliotekanauki.pl/articles/31342440.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
distance
Steiner distance
Wiener index
Steiner Wiener index
Opis:
The Wiener index $ W(G) $ of a connected graph $G$, introduced by Wiener in 1947, is defined as $ W(G) = \Sigma_{ u,v \in V (G) } \ d_G(u, v) $, where $ d_G(u, v) $ is the distance (the length a shortest path) between the vertices $u$ and $v$ in $G$. For $ S \subseteq V (G) $, the Steiner distance $d(S)$ of the vertices of $S$, introduced by Chartrand et al. in 1989, is the minimum size of a connected subgraph of $G$ whose vertex set contains $S$. The $k$-th Steiner Wiener index $ SW_k(G) $ of $G$ is defined as $ SW_k(G)= \Sigma_{ S \subseteq V(G) \ |S|=k } \ d(S) $. We investigate the following problem: Fixed a positive integer $k$, for what kind of positive integer w does there exist a connected graph $G$ (or a tree $T$) of order $ n \ge k$ such that $ SW_k(G) = w$ (or $ SW_k(T) = w$)? In this paper, we give some solutions to this problem.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 83-95
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Removable Edges on a Hamilton Cycle or Outside a Cycle in a 4-Connected Graph
Autorzy:
Wu, Jichang
Broersma, Hajo
Mao, Yaping
Ma, Qin
Powiązania:
https://bibliotekanauki.pl/articles/32083895.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
4-connected graph
removable edge
fragment
atom
Opis:
Let G be a 4-connected graph. We call an edge e of G removable if the following sequence of operations results in a 4-connected graph: delete e from G; if there are vertices with degree 3 in G−e, then for each (of the at most two) such vertex x, delete x from G − e and turn the three neighbors of x into a clique by adding any missing edges (avoiding multiple edges). In this paper, we continue the study on the distribution of removable edges in a 4-connected graph G, in particular outside a cycle of G or in a spanning tree or on a Hamilton cycle of G. We give examples to show that our results are in some sense best possible.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 559-587
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Conflict-Free Vertex-Connections of Graphs
Autorzy:
Li, Xueliang
Zhang, Yingying
Zhu, Xiaoyu
Mao, Yaping
Zhao, Haixing
Jendrol’, Stanislav
Powiązania:
https://bibliotekanauki.pl/articles/31868621.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex-coloring
conflict-free vertex-connection
2-connected graph
tree
Opis:
A path in a vertex-colored graph is called conflict-free if there is a color used on exactly one of its vertices. A vertex-colored graph is said to be conflict-free vertex-connected if any two vertices of the graph are connected by a conflict-free path. This paper investigates the question: for a connected graph G, what is the smallest number of colors needed in a vertex-coloring of G in order to make G conflict-free vertex-connected. As a result, we get that the answer is easy for 2-connected graphs, and very difficult for connected graphs with more cut-vertices, including trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 51-65
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies