- Tytuł:
- On non-primary Fréchet Schwartz spaces
- Autorzy:
- C. Díaz, J.
- Powiązania:
- https://bibliotekanauki.pl/articles/1218870.pdf
- Data publikacji:
- 1997
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
Fréchet spaces
primary spaces
Schwartz spaces
unconditional decompositions
spaces of Moscatelli type
holomorphic functions of bounded type - Opis:
- Let E be a Fréchet Schwartz space with a continuous norm and with a finite-dimensional decomposition, and let F be any infinite-dimensional subspace of E. It is proved that E can be written as G ⨁ H where G and H do not contain any subspace isomorphic to F. In particular, E is not primary. If the subspace F is not normable then the statement holds for other quasinormable Fréchet spaces, e.g., if E is a quasinormable and locally normable Köthe sequence space, or if E is a space of holomorphic functions of bounded type $ℋ_b(U)$, where U is a Banach space or a bounded absolutely convex open set in a Banach space.
- Źródło:
-
Studia Mathematica; 1997, 126, 3; 291-307
0039-3223 - Pojawia się w:
- Studia Mathematica
- Dostawca treści:
- Biblioteka Nauki