Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Blidia, Mostafa" wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
A Characterization of Trees for a New Lower Bound on the K-Independence Number
Autorzy:
Meddah, Nacéra
Blidia, Mostafa
Powiązania:
https://bibliotekanauki.pl/articles/30146579.pdf
Data publikacji:
2013-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
independence
k-independence
Opis:
Let $k$ be a positive integer and $G = (V,E)$ a graph of order $n$. A subset $S$ of $V$ is a $k$-independent set of $G$ if the maximum degree of the subgraph induced by the vertices of $S$ is less or equal to $k − 1$. The maximum cardinality of a $k$-independent set of $G$ is the $k$-independence number $\beta_k (G)$. In this paper, we show that for every graph $ G $, $\beta_k (G) \geq $ \( \lceil ( n + ( \chi(G)-1) \Sigma_{v \in S(G)} \min ( | L_v|, k-1) ) / \chi(G) \rceil \), where $\chi(G)$, $s(G)$ and $L_v$ are the chromatic number, the number of supports vertices and the number of leaves neighbors of $v$, in the graph $G$, respectively. Moreover, we characterize extremal trees attaining these bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 2; 395-410
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A characterization of locating-total domination edge critical graphs
Autorzy:
Blidia, Mostafa
Dali, Widad
Powiązania:
https://bibliotekanauki.pl/articles/743847.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
locating-domination
critical graph
Opis:
For a graph G = (V,E) without isolated vertices, a subset D of vertices of V is a total dominating set (TDS) of G if every vertex in V is adjacent to a vertex in D. The total domination number γₜ(G) is the minimum cardinality of a TDS of G. A subset D of V which is a total dominating set, is a locating-total dominating set, or just a LTDS of G, if for any two distinct vertices u and v of V(G)∖D, $N_G(u) ∩ D ≠ N_G(v) ∩ D$. The locating-total domination number $γ_L^t(G)$ is the minimum cardinality of a locating-total dominating set of G. A graph G is said to be a locating-total domination edge removal critical graph, or just a $γ_L^{t+}$-ER-critical graph, if $γ_L^t(G-e) > γ_L^t(G)$ for all e non-pendant edge of E. The purpose of this paper is to characterize the class of $γ_L^{t+}$-ER-critical graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 1; 197-202
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the p-domination number of cactus graphs
Autorzy:
Blidia, Mostafa
Chellali, Mustapha
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/744381.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
p-domination number
cactus graphs
Opis:
Let p be a positive integer and G = (V,E) a graph. A subset S of V is a p-dominating set if every vertex of V-S is dominated at least p times. The minimum cardinality of a p-dominating set a of G is the p-domination number γₚ(G). It is proved for a cactus graph G that γₚ(G) ⩽ (|V| + |Lₚ(G)| + c(G))/2, for every positive integer p ⩾ 2, where Lₚ(G) is the set of vertices of G of degree at most p-1 and c(G) is the number of odd cycles in G.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 3; 355-361
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extremal Graphs for a Bound on the Roman Domination Number
Autorzy:
Bouchou, Ahmed
Blidia, Mostafa
Chellali, Mustapha
Powiązania:
https://bibliotekanauki.pl/articles/31513493.pdf
Data publikacji:
2020-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination
Roman domination number
Nordhaus-Gaddum inequalities
Opis:
A Roman dominating function on a graph G = (V, E) is a function f:V (G) → {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value w(f) = Σu∈V(G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G, denoted by γR(G). In 2009, Chambers, Kinnersley, Prince and West proved that for any graph G with n vertices and maximum degree Δ, γR(G) ≤ n + 1 − Δ. In this paper, we give a characterization of graphs attaining the previous bound including trees, regular and semiregular graphs. Moreover, we prove that the problem of deciding whether γR(G) = n + 1 − Δ is co-complete. Finally, we provide a characterization of extremal graphs of a Nordhaus–Gaddum bound for γR(G) + γR (Ḡ), where Ḡ is the complement graph of G.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 3; 771-785
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Maximal k-independent sets in graphs
Autorzy:
Blidia, Mostafa
Chellali, Mustapha
Favaron, Odile
Meddah, Nacéra
Powiązania:
https://bibliotekanauki.pl/articles/743533.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
k-independent
cactus
Opis:
A subset of vertices of a graph G is k-independent if it induces in G a subgraph of maximum degree less than k. The minimum and maximum cardinalities of a maximal k-independent set are respectively denoted iₖ(G) and βₖ(G). We give some relations between βₖ(G) and $β_j(G)$ and between iₖ(G) and $i_j(G)$ for j ≠ k. We study two families of extremal graphs for the inequality i₂(G) ≤ i(G) + β(G). Finally we give an upper bound on i₂(G) and a lower bound when G is a cactus.
Źródło:
Discussiones Mathematicae Graph Theory; 2008, 28, 1; 151-163
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies