Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ahmed, M. A. O." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Using Diversity for Classifier Ensemble Pruning : an Empirical Investigation
Autorzy:
Ahmed, M. A. O.
Didaci, L.
Lavi, B.
Fumera, G.
Powiązania:
https://bibliotekanauki.pl/articles/375851.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
multiple classifier systems
ensemble pruning
diversity measures
Opis:
The concept of `diversity' has been one of the main open issues in the field of multiple classifier systems. In this paper we address a facet of diversity related to its effectiveness for ensemble construction, namely, explicitly using diversity measures for ensemble construction techniques based on the kind of overproduce and choose strategy known as ensemble pruning. Such a strategy consists of selecting the (hopefully) more accurate subset of classifiers out of an original, larger ensemble. Whereas several existing pruning methods use some combination of individual classifiers' accuracy and diversity, it is still unclear whether such an evaluation function is better than the bare estimate of ensemble accuracy. We empirically investigate this issue by comparing two evaluation functions in the context of ensemble pruning: the estimate of ensemble accuracy, and its linear combination with several well-known diversity measures. This can also be viewed as using diversity as a regularizer, as suggested by some authors. To this aim we use a pruning method based on forward selection, since it allows a direct comparison between different evaluation functions. Experiments on thirty-seven benchmark data sets, four diversity measures and three base classifiers provide evidence that using diversity measures for ensemble pruning can be advantageous over using only ensemble accuracy, and that diversity measures can act as regularizers in this context
Źródło:
Theoretical and Applied Informatics; 2017, 29, 1-2; 25-39
1896-5334
Pojawia się w:
Theoretical and Applied Informatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theoretical model to determine the Porosity and refractive index of porous silicon type-n by using Atomic force microscope
Autorzy:
Abdulridha, Wasna'a M.
Abd, Ahmed N.
Dawood, Mohammed O.
Powiązania:
https://bibliotekanauki.pl/articles/1193012.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Atomic Force Microscope
Porous silicon
n-PS
porosity
refractive index
thickness
Opis:
Porous silicon (PS) layer was produced by photochemical etching process at (5, 7, 10, 12 and 15) etching time and 7 mA/cm2 current density then after investigation by Atomic Force Microscope (AFM) the thickness of PS layer from about 3.4 µm to 15.8 µm was determined. The surface of porous silicon is formed from small pyramids with porous structure, where the porosity of n-PS is from ≈ (32-72%). Porous silicon layer formed on the silicon substrates by photochemical etching contains also the nanopores with diameter about (16.41-42) nm in current density (7mA/cm2). The porosity and thickness was determined from AFM results and compared with the result from the usually measured porosity and thickness through a gravimetric method we found that the values of porosity and thickness calculated from two methods are approximately similar to each other with few difference, the influence of structure changes on optical properties such as refractive index, which decreases exponentially with porosity.
Źródło:
World Scientific News; 2016, 28; 29-40
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies