Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gaussian" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Speech emotion recognition under white noise
Autorzy:
Huang, C.
Chen, G.
Yu, H.
Bao, Y.
Zhao, L.
Powiązania:
https://bibliotekanauki.pl/articles/177301.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
speech emotion recognition
speech enhancement
emotion model
Gaussian mixture model
Opis:
Speaker‘s emotional states are recognized from speech signal with Additive white Gaussian noise (AWGN). The influence of white noise on a typical emotion recogniztion system is studied. The emotion classifier is implemented with Gaussian mixture model (GMM). A Chinese speech emotion database is used for training and testing, which includes nine emotion classes (e.g. happiness, sadness, anger, surprise, fear, anxiety, hesitation, confidence and neutral state). Two speech enhancement algorithms are introduced for improved emotion classification. In the experiments, the Gaussian mixture model is trained on the clean speech data, while tested under AWGN with various signal to noise ratios (SNRs). The emotion class model and the dimension space model are both adopted for the evaluation of the emotion recognition system. Regarding the emotion class model, the nine emotion classes are classified. Considering the dimension space model, the arousal dimension and the valence dimension are classified into positive regions or negative regions. The experimental results show that the speech enhancement algorithms constantly improve the performance of our emotion recognition system under various SNRs, and the positive emotions are more likely to be miss-classified as negative emotions under white noise environment.
Źródło:
Archives of Acoustics; 2013, 38, 4; 457-463
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Voice Conversion Based on Hybrid SVR and GMM
Autorzy:
Song, P.
Jin, Y.
Zhao, L.
Zou, C.
Powiązania:
https://bibliotekanauki.pl/articles/177748.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
voice conversion
support vector regression
Gaussian mixture models
F0 prediction
speaker-specific information
Opis:
A novel VC (voice conversion) method based on hybrid SVR (support vector regression) and GMM (Gaussian mixture model) is presented in the paper, the mapping abilities of SVR and GMM are exploited to map the spectral features of the source speaker to those of target ones. A new strategy of F0 transfor- mation is also presented, the F0s are modeled with spectral features in a joint GMM and predicted from the converted spectral features using the SVR method. Subjective and objective tests are carried out to evaluate the VC performance; experimental results show that the converted speech using the proposed method can obtain a better quality than that using the state-of-the-art GMM method. Meanwhile, a VC method based on non-parallel data is also proposed, the speaker-specific information is investigated us- ing the SVR method and preliminary subjective experiments demonstrate that the proposed method is feasible when a parallel corpus is not available.
Źródło:
Archives of Acoustics; 2012, 37, 2; 143-149
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies