Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zhang, Shenggui" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs
Autorzy:
Lia, Binlong
Zhang, Shenggui
Powiązania:
https://bibliotekanauki.pl/articles/31340942.pdf
Data publikacji:
2016-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
heavy cycles
heavy subgraphs
Opis:
Let G be a graph on n vertices. A vertex of G with degree at least n/2 is called a heavy vertex, and a cycle of G which contains all the heavy vertices of G is called a heavy cycle. In this note, we characterize graphs which contain no heavy cycles. For a given graph H, we say that G is H-heavy if every induced subgraph of G isomorphic to H contains two nonadjacent vertices with degree sum at least n. We find all the connected graphs S such that a 2-connected graph G being S-heavy implies any longest cycle of G is a heavy cycle.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 383-392
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heavy subgraph pairs for traceability of block-chains
Autorzy:
Li, Binlong
Broersma, Hajo
Zhang, Shenggui
Powiązania:
https://bibliotekanauki.pl/articles/30148234.pdf
Data publikacji:
2014-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
block-chain traceable graph
Ore-type condition
forbidden subgrap
$o_{−1}$-heavy subgraph
Opis:
A graph is called traceable if it contains a Hamilton path, i.e., a path containing all its vertices. Let G be a graph on n vertices. We say that an induced subgraph of G is $o_{−1}$-heavy if it contains two nonadjacent vertices which satisfy an Ore-type degree condition for traceability, i.e., with degree sum at least $n−1$ in $G$. A block-chain is a graph whose block graph is a path, i.e., it is either a $P_1$, $P_2$, or a 2-connected graph, or a graph with at least one cut vertex and exactly two end-blocks. Obviously, every traceable graph is a block-chain, but the reverse does not hold. In this paper we characterize all the pairs of connected $o_{−1}$-heavy graphs that guarantee traceability of block-chains. Our main result is a common extension of earlier work on degree sum conditions, forbidden subgraph conditions and heavy subgraph conditions for traceability
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 2; 287-307
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A σ₃ type condition for heavy cycles in weighted graphs
Autorzy:
Zhang, Shenggui
Li, Xueliang
Broersma, Hajo
Powiązania:
https://bibliotekanauki.pl/articles/743462.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
weighted graph
(long, heavy, Hamilton) cycle
weighted degree
(weighted) degree sum
Opis:
A weighted graph is a graph in which each edge e is assigned a non-negative number w(e), called the weight of e. The weight of a cycle is the sum of the weights of its edges. The weighted degree $d^w(v)$ of a vertex v is the sum of the weights of the edges incident with v. In this paper, we prove the following result: Suppose G is a 2-connected weighted graph which satisfies the following conditions: 1. The weighted degree sum of any three independent vertices is at least m; 2. w(xz) = w(yz) for every vertex z ∈ N(x)∩N(y) with d(x,y) = 2; 3. In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight. Then G contains either a Hamilton cycle or a cycle of weight at least 2m/3. This generalizes a theorem of Fournier and Fraisse on the existence of long cycles in k-connected unweighted graphs in the case k = 2. Our proof of the above result also suggests a new proof to the theorem of Fournier and Fraisse in the case k = 2.
Źródło:
Discussiones Mathematicae Graph Theory; 2001, 21, 2; 159-166
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forbidden Subgraphs for Hamiltonicity of 1-Tough Graphs
Autorzy:
Li, Binlong
Broersma, Hajo J.
Zhang, Shenggui
Powiązania:
https://bibliotekanauki.pl/articles/31340596.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
forbidden subgraph
1-tough graph
H-free graph
hamiltonian graph
Opis:
A graph G is said to be 1-tough if for every vertex cut S of G, the number of components of G − S does not exceed |S|. Being 1-tough is an obvious necessary condition for a graph to be hamiltonian, but it is not sufficient in general. We study the problem of characterizing all graphs H such that every 1-tough H-free graph is hamiltonian. We almost obtain a complete solution to this problem, leaving H = K1 ∪ P4 as the only open case.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 915-929
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies