- Tytuł:
- On the Determinant of q-Distance Matrix of a Graph
- Autorzy:
-
Li, Hong-Hai
Su, Li
Zhang, Jing - Powiązania:
- https://bibliotekanauki.pl/articles/30147229.pdf
- Data publikacji:
- 2014-02-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
q-distance matrix
determinant
weighted graph
directed graph - Opis:
- In this note, we show how the determinant of the q-distance matrix Dq(T) of a weighted directed graph G can be expressed in terms of the corresponding determinants for the blocks of G, and thus generalize the results obtained by Graham et al. [R.L. Graham, A.J. Hoffman and H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977) 85-88]. Further, by means of the result, we determine the determinant of the q-distance matrix of the graph obtained from a connected weighted graph G by adding the weighted branches to G, and so generalize in part the results obtained by Bapat et al. [R.B. Bapat, S. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193- 209]. In particular, as a consequence, determinantal formulae of q-distance matrices for unicyclic graphs and one class of bicyclic graphs are presented.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2014, 34, 1; 103-111
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki