Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "luki systematyczne" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
O metodzie prognozowania brakujących danych w dziennych szeregach czasowych z lukami systematycznymi
About method of forecasting the missing data in daily time series with systematic GAPS
Autorzy:
Szmuksta-Zawadzka, Maria
Zawadzki, Jan
Powiązania:
https://bibliotekanauki.pl/articles/453202.pdf
Data publikacji:
2012
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
szeregi czasowe
dane dzienne
prognozowanie brakujących danych
luki systematyczne
data gaps
daily data
forecasting
Opis:
W pracy przedstawiono metodę modelowania a następnie prognozowania w sytuacji, gdy w szeregu czasowym dla danych dziennych występują luki systematyczne. Podstawą budowy prognoz były regularne hierarchiczne modele szeregu czasowego opisujące wahania o rocznym. Wahania o cyklu tygodniowym były opisywane za pomocą zmiennej grupującej, w skład której wchodziły dni podobne oraz tego rodzaju zmiennych dla pozostałych dni. W modelach wystąpiły także zmienne o charakterze migawkowym oznaczające występowanie świąt oraz dni około świątecznych. Rozważania o charakterze teoretyczne zostały zilustrowane przykładem empirycznym dla założonego wariantu luk w danych. Przeprowadzona została analiza dokładności błędów prognoz intern ekstrapolacyjnych ogółem oraz w dezagregacji na dni tygodnia, miesiące i święta oraz dni około świąteczne.
This paper presents a method for modeling and then forecasting in situation, when in time series for daily data contain systematic gaps. Base of construction were regular hierarchical time series models describing annual fluctuations. Weekly fluctuations were described as a grouping variable, which contains similar days and this type variables for other days. In models were used also dummy variables describing holidays and days pre- and post- holidays. Theoretical considerations were illustrated by empirical example for selected variant of gaps. Based on the same estimated equations, inter- and extrapolation predictions ware built. For both types of prediction – in general and in disaggregation to weekdays and months and holidays and days pre- and post holidays.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2012, 13, 3; 202-212
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
MODELE ADAPTACYJNE W PROGNOZOWANIU NA PODSTAWIE SZEREGÓW CZASOWYCH O WYSOKIEJ CZĘSTOTLIWOŚCI Z LUKAMI SYSTEMATYCZNYMI
ADAPTIVE MODELS IN FORECASTING OF HIGH-FREQUENCY TIMES SERIES WITH SYSTEMATIC GAPS
Autorzy:
Zawadzki, Jan
Powiązania:
https://bibliotekanauki.pl/articles/453186.pdf
Data publikacji:
2017
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
prognozowanie
dane o wysokiej częstotliwości
złożona sezonowość
wyrównywanie wykładnicze
luki systematyczne
forecasting
high frequency data
complex seasonality
exponential smoothing
systematic gaps
Opis:
W pracy przedstawione zostaną wyniki zastosowania modeli Browna, Holta i Holta-Wintersa w prognozowaniu zmiennej o bardzo wysokiej częstotliwości obserwowania w warunkach braku pełnej informacji na podstawie danych oczyszczonych z dwóch lub trzech rodzajów sezonowości. Rozpatrywany były dwa warianty luk systematycznych.
In the paper will be presented results of the application of Brown, Holt and Holt-Winters models in the forecasting of a very high frequency variable in condition of lack of full information, based on seasonal adjusted time series, from which two or three types of seasonal fluctuations were removed. Two variants of systematic gaps were considered.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2017, 18, 2; 374-389
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modele nieklasyczne w prognozowaniu zmiennych ekonomicznych ze złożoną sezonowością z lukami systematycznymi - analiza empiryczna
Application of nonclassical models in forecasting of economic variables with complex seasonality and systematic gaps - the empirical analysis
Autorzy:
Szmuksta-Zawadzka, Maria
Zawadzki, Jan
Powiązania:
https://bibliotekanauki.pl/articles/592844.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Prognozowanie
Systematyczne luki w danych
Wyrównywanie wykładnicze
Złożona sezonowość
Complex seasonality
Exponential smoothing
Forecasting
Systematical gaps in data
Opis:
W artykule przedstawiono wyniki wykorzystania wybranych modeli adaptacyjnych w prognozowaniu zmiennej o wysokiej częstotliwości obserwowania z lukami systematycznymi. Modelowaniu oraz prognozowaniu poddano szeregi czasowe, z których wyeliminowano jeden lub dwa rodzaje wahań sezonowych. Prognozy końcowe były sumami (iloczynami) prognoz otrzymanych dla danych oczyszczonych i składników (wskaźników) sezonowości. Artykuł stanowi rozszerzenie rozważań autorów [Szmuksta-Zawadzka i Zawadzki, 2014] na przypadek występowania systematycznych luk w danych.
This paper presents the results of the application of selected adaptive models in forecasting of high-frequency variable with systematic gaps. To modeling and forecasting were used time series, from which seasonal fluctuations were eliminated. Final forecasts were built as sums (products) of forecasts, for the data “cleaned” from seasonality and seasonal components (indicators). The paper is an extension of considerations authors [Szmuksta-Zawadzka and Zawadzki, 2014] on the case of the occurrence of systematic gaps in the data.
Źródło:
Studia Ekonomiczne; 2016, 291; 102-115
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies