Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zaremba, M.B." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Intelligence in manufacturing systems: the pattern recognition perspective
Autorzy:
Zaremba, M. B.
Powiązania:
https://bibliotekanauki.pl/articles/971032.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
Intelligent Manufacturing Systems
pattern recognition
computational intelligence
neural networks
distributed systems
spatial filtering
feature selection
dimensionality reduction
Opis:
The field of Intelligent Manufacturing Systems (IMS) has been generally equated with the use of Artificial Intelligence and Computational Intelligence methods and techniques in the design and operation of manufacturing systems. Those methods and techniques are now applied in many different technological domains to deal with such pervasive problems as data imprecision and nonlinear system behavior. The focus in IMS is now shifting to a broader understanding of the intelligent behavior of manufacturing systems. The questions debated by researchers today relate more to what kind and what level of adaptability to instill in the structure and operation of a manufacturing system, with the discussions increasingly gravitating to the issue of system self-organization. This paper explores the changing face of IMS from the perspective of the pattern recognition domain. It presents design criteria for techniques that will allow us to implement manufacturing systems exhibiting adaptive and intelligent behaviour. Examples are given to show how incorporating pattern recognition capabilities can help us build more intelligence and self-organization into the manufacturing systems of the future.
Źródło:
Control and Cybernetics; 2010, 39, 1; 233-258
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-strategy navigation for a mobile data acquisition platform using genetic algorithms
Autorzy:
Halal, F.
Zaremba, M. B.
Powiązania:
https://bibliotekanauki.pl/articles/950950.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
genetic algorithms
path planning
monitoring system
remote sensing
navigation control
heuristic search
Opis:
Monitoring of biological and chemical pollutants in large bodies of water requires the acquisition of a large number of in-situ measurements by a mobile sensor platform. Critical to this problem is an efficient path planning method, easily adaptable to different control strategies that ensure the collection of data of the greatest value. This paper proposes a deliberative path planning algorithm, which features the use of waypoints for a ship navigation trajectory that are generated by Genetic Algorithm (GA) based procedures. The global search abilities of Genetic Algorithms are combined with the heuristic local search in order to implement a navigation behaviour suitable to the required data collection strategy. The adaptive search system operates on multi-layer maps generated from remote sensing data, and provides the capacity for dealing with multiple classes of water pollutants. A suitable objective function was proposed to handle different sampling strategies for the collection of samples from multiple water pollutant classes. A region-of-interest (ROI) component was introduced to deal effectively with the large scale of search environments by pushing the search towards ROI zones. This resulted in the reduction of the search time and the computing cost, as well as good convergence to an optimal solution. The global path planning performance was further improved by multipoint crossover operators running in each GA generation. The system was developed and tested for inland water monitoring and trajectory planning of a mobile sample acquisition platform using commercially available satellite data.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2017, 11, 1; 30-41
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automated airborne LiDAR-based assessment of timber measurements for forest management
Autorzy:
Zaremba, M. B.
Doyon, F.
Senécal, J. F.
Powiązania:
https://bibliotekanauki.pl/articles/407435.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
forest mensuration
lidar
remote sensing
terrain modeling
tree crown
timber volume modeling
white pine
Opis:
This paper presents processing and analysis techniques to apply LiDAR data to estimate tree diameter at breast height (DBH) - a critical variable applied in a large number of forest management tasks. Our analysis focuses on the estimation of DBH using only LiDAR-derived tree height and tree crown dimensions, i.e., variables accessible from aerial observations. The modeling process was performed using 161 white and red pine trees from four 3850 m2 plots in the Foret de l'Aigle located in southwestern Quebec. Segments of the LiDAR data extracted for DBH estimation were obtained using the Individual Tree Crown (ITC) delineation method. Regression models were investigated using height as well as crown dimensions, which increased the precision of the model. This study demonstrates that DBH can be modeled to acceptable accuracy using altimetry data and automated data processing procedures and then be used in high-precision timber volume assessment.
Źródło:
Management and Production Engineering Review; 2012, 3, 3; 79-85
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies