Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hevko, Olena" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Atrial fibrillation detection on electrocardiograms with convolutional neural networks
Detekcja migotania przedsionków na elektrokardiogramach z wykorzystaniem konwolucyjnej sieci neuronowej
Autorzy:
Kifer, Viktor
Zagorodna, Natalia
Hevko, Olena
Powiązania:
https://bibliotekanauki.pl/articles/408581.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
electrocardiography
machine learning
neural network
elektrokardiografia
nauczanie maszynowe
sieć neuronowa
Opis:
In this paper, we present our research which confirms the suitability of the convolutional neural network usage for the classification of single-lead ECG recordings. The proposed method was designed for classifying normal sinus rhythm, atrial fibrillation (AF), non-AF related other abnormal heart rhythms and noisy signals. The method combines manually selected features with the features learned by the deep neural network. The Physionet Challenge 2017 dataset of over 8500 ECG recordings was used for the model training and validation. The trained model reaches an average F1-score 0.71 in classifying normal sinus rhythm, AF and other rhythms respectively.
W tej pracy, przedstawiamy nasze badania, które potwierdzają przydatność zastosowania konwolucyjnych sieci neuronowych dla klasyfikacji zapisów jedno-odprowadzeniowego EKG. (tak brzmi ta nazwa). Proponowana metoda została zaprojektowana dla klasyfikowania prawidłowego rytmu zatokowego, migotania przedsionków (AF), poza-AF powiązanych z innymi nieprawidłowymi rytmami serca i zaszumionymi (głośnymi?) sygnałami. Ta metoda łączy cechy wyselekcjonowane ręcznie z cechami wyuczonymi przez głębokie sieci neuronowe. Zbiór danych Physionet Challenge 2017 zawierający ponad 8500 zapisów EKG został zastosowany dla modelu szkolenia oraz walidacji. Model nauczony (wyszkolony?) osiąga odpowiednio średni F1-wynik 0.71 w klasyfikowaniu prawidłowego rytmu zatokowego, rytmu AF oraz innych rytmów.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2019, 9, 4; 69-73
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies