Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "landsat" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Semiautomatic land cover mapping according to the 2nd level of the CORINE Land Cover legend
Autorzy:
Golenia, M.
Zagajewski, B.
Ochtyra, A.
Hościło, A.
Powiązania:
https://bibliotekanauki.pl/articles/92466.pdf
Data publikacji:
2015
Wydawca:
Oddział Kartograficzny Polskiego Towarzystwa Geograficznego
Tematy:
classification
Corine Land Cover
Landsat
artificial neural networks
Warsaw
Opis:
Actual land cover maps are a very good source of information on present human activities. It increases value of actual spatial databases and it is a key element for decision makers. Therefore, it is important to develop fast and cheap algorithms and procedures of spatial data updating. Every day, satellite remote sensing deliver vast amount of new data, which can be semi-automatically classified. The paper presents a method of land cover classification based on a fuzzy artificial neural network simulator and Landsat TM satellite images. The latest CORINE Land Cover 2012 polygons were used as reference data. Three satellite images acquired 21 April 2011, 5 June 2010, 27 August 2011 over Warsaw and surrounding areas were processed. As an outcome of classification procedure, the maps, error matrices and a set of overall, producer and user accuracies and a kappa coefficient were achieved. The classification accuracy oscillates around 76% and confirms that artificial neural networks can be successfully used for forest, urban fabric, arable land, pastures, inland waters and permanent crops mapping. Low accuracies were obtained in case of heterogenic land cover units.
Źródło:
Polish Cartographical Review; 2015, 47, 4; 203-212
2450-6974
Pojawia się w:
Polish Cartographical Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena kondycji drzewostanów Tatrzańskiego Parku Narodowego za pomocą metody drzewa decyzyjnego oraz wielospektralnych obrazów satelitarnych Landsat 5 TM
Assessment of the condition of forests in the Tatra National Park using decision tree method and multispectral Landsat TM satellite images
Autorzy:
Ochtyra, A.
Zagajewski, B.
Kozłowska, A.
Marcinkowska-Ochtyra, A.
Jarocińska, A.
Powiązania:
https://bibliotekanauki.pl/articles/972978.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Leśne
Tematy:
drzewostany
kondycja drzew
metody oceny
drzewa decyzyjne
teledetekcja satelitarna
obrazy satelitarne
satelita Landsat TM
leśnictwo
lasy górskie
Tatrzański Park Narodowy
forest
assessment of condition
vegetation indices
remote sensing
the Tatras
Landsat TM
Opis:
The paper presents a method of Landsat 5 Thematic Mapper satellite image processing to assess the condition of forests in the Tatra National Park (southern Poland). Selected images were acquired on 1987/09/01, 2005/09/02 and 2011/09/03 from the same sensor with maximum time interval for the first and last scene and from similar phenological period. Firstly, the data were radiometrically corrected using the ATCOR 2/3 software and Digital Terrain Model from the ASTER mission. Quality of the correction was assessed calculating RMSE for reflectance values from images and resampled spectral characteristics collected in terrain. RMSE was in range 3−10%. Next, basing on Landsat images, Normalized Difference Infrared Index (NDII) and a Maximum Likelihood supervised classificatory, following dominant land cover types were identified: forests (including dwarf pine), grasslands, rocks, lakes, shadows (additionally clouds were dis−tinguished on data from 1987/09/01). It allowed to select forest areas with producer accuracy not worse than 97.69% and user accuracy not worse than 98.31%. On corrected Landsat images Normalized Difference Vegetation Index (NDVI, an overall vegetation state) and Moisture Stress Index (MSI, canopy water content) were calculated. Vegetation indices discriminated forest state using the decision tree method. The worst overall condition was observed for the 1987 (about 21% of forest stands were in the worst condition and 87% were in medium condition), while the best one in 2005 (75.51% forest stands were in good condition and 10.66% were in the best condition). In case of 2011, the overall condition was quite good, but there were large areas with poor condition caused by bark beetle outbreaks. Proposed method allows for a fast and objective assessment of forest condition. It is possible to detect damaged areas or stands in poor condition. It can be complement for traditional methods of monitoring and management in forestry and nature protection.
Źródło:
Sylwan; 2016, 160, 03; 256-264
0039-7660
Pojawia się w:
Sylwan
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do aktualizacji map pokrycia terenu Corine
The use of the artificial neural networks to update the CORINE Land Cover maps
Autorzy:
Golenia, M.
Zagajewski, B.
Ochtyra, A.
Hościło, A.
Powiązania:
https://bibliotekanauki.pl/articles/204319.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
klasyfikacja
Corine Land Cover
Landsat
sztuczne sieci neuronowe
Warszawa
classification
CORINE Land Cover
artificial neural networks
Warsaw
Opis:
Aktualne mapy pokrycia terenu są podstawą wielu dyscyplin nauki oraz mają szerokie zastosowanie aplikacyjne. Jednym z problemów aktualizacji map jest proces aktualizacji danych. Teledetekcja dostarcza codziennie nowych zobrazowań satelitarnych, które mogą zaspokoić potrzeby aktualizacji baz danych. W niniejszym artykule autorzy przedstawiają metodę klasyfikacji pokrycia terenu sztucznymi sieciami neuronowymi fuzzy ARTMAP zgodnie z założeniami i legendą Corine Land Cover na podstawie danych satelitarnych Landsat, które wykorzystywane są do opracowania map pokrycia terenu. W artykule użyto jako danych referencyjnych i weryfikacyjnych najnowszą mapę Corine Land Cover (CLC) 2012. Do przeprowadzenia klasyfikacji symulatorem wykorzystano trzy zdjęcia satelitarne Landsat TM (21.04.2011, 05.06.2010, 27.08.2011). Obszarem badań były okolice Warszawy. Wynikami pracy symulatora są mapy klasyfikacji pokrycia terenu oraz macierze błędów klasyfikacji. Uzyskane wyniki potwierdzają, że sztuczne sieci neuronowe mogą z powodzeniem być wykorzystywane do aktualizacji map pokrycia terenu.
Modern land cover maps are the basis of many scientific disciplines and they are widely applied. One of the problems connected with the revision of maps is the data updating procedure. Remote Sensing daily provides us with the new satellite images, that can meet the needs of database updates. In this article the method of classification for land cover with the artificial, neural, fuzzy ARTMAP networks is presented by the authors in accordance with the objectives and legend of the CORINE Land Cover Map on the basis of the Landsat satellite data, which are used to elaborate the land cover maps. The latest CORINE Land Cover map 2012 polygons are used as the reference and verification data. Three satellite Landsat TM images of 21.04.2011, 05.06.2010, 27.08.2011 are processed by a fuzzy, artificial, neural network classificatory simulator. The area of research was Warsaw and its surrounding area. The results of this research are the classificatory land cover maps and error matrices. Acquired results confirm that the artificial neural networks can be successfully used for land cover updating.
Źródło:
Polski Przegląd Kartograficzny; 2015, T. 47, nr 3-4, 3-4; 257-266
0324-8321
Pojawia się w:
Polski Przegląd Kartograficzny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapa geomorfologiczna województw pomorskiego i warmińsko-mazurskiego z wykorzystaniem metod geoinformatycznych
Geomorphological map of pomorskie and warmińsko-mazurskie voivodeships using geoinformatics methods
Autorzy:
Marcinkowska, A.
Ochtyra, A.
Olędzki, J. R.
Wołk-Musiał, E.
Zagajewski, B.
Powiązania:
https://bibliotekanauki.pl/articles/132207.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
forma
rzeźba
geomorfologia
Landsat
mapa cyfrowa
województwo podlaskie
województwo pomorskie
województwo warmińsko-mazurskie
wektoryzacja
zdjęcie satelitarne
landform
geomorphology
digital map
podlaskie voivodeship
pomorskie voivodeship
warmińsko-mazurskie voivodeship
vectorization
satellite image
Opis:
The aim of this study was to prepare geomorphological maps of pomorskie and warminsko-mazurskie voivodeships in scale 1:300 000. Analysis primarily were based on the General Geomorphological Map of Poland 1:500 000 and Landsat 5 TM satellite images in RGB 453 composition, and alternatively with Geological Map of Poland 1:200 000, Topographic Map of Poland 1:100 000 and Digital Terrain Model from Shuttle Radar Topography Mission. These materials were processed into digital form and imported them PUWG 1992 coordinate system. Based on them was lead interpretation and vectorization of geomorphological forms. It was detailing the boundaries in accordance with the content of the General Geomorphological Map of Poland 1:500 000. Then polygons were coded according to the numbering of J. Borzuchowski (2010). Very important was process to design a legend and then editing maps. The last stage of this study was to prepare a composition for printing maps. The effect of studies are geomorphological maps of pomorskie and warminsko-mazurskie voivodeships in scale 1:300 000, and an interactive databases in ESRI shapefile format (*.shp).
Źródło:
Teledetekcja Środowiska; 2013, 49; 43-79
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies