Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sulewska, M.J." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Data compression by Principal Component Analysis (PCA) in modelling of soil density parameters based on soil granulation
Autorzy:
Sulewska, M. J.
Zabielska-Adamska, K.
Powiązania:
https://bibliotekanauki.pl/articles/2060294.pdf
Data publikacji:
2015
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Artificial Neural Networks
principal component analysis
compaction parameters
minimum and maximum dry density of solid particles
graining parameters
Opis:
The parameter for the density specification of naturally compacted non-cohesive soils and soils in embankments of hydraulic structures is the density index (ID). The parameter used to control the quality of compaction of cohesive and non-cohesive soils artificially thickened, embedded in a variety of embankments is the degree of compaction (IS). In order to determine the parameters of density (ID or IS), compaction parameters ( or should be examined in a laboratory, which often is a long and difficult procedure to carry out. Therefore, there is a need for methods of improving and shortening the test of compaction parameters based on the development and application of useful correlations. Since compaction parameters are dependent on the soil granulation, a method based on regression and artificial neural networks was applied to develop required correlations. Due to the large number of input variables of neural networks in relation to the number of case studies, a PCA method was used to reduce the number of input variables, which resulted in reduction in the size of neural networks.
Źródło:
Geological Quarterly; 2015, 59, 2; 400--407
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ANN-based modeling of fly ash compaction curve
Modelowanie krzywej zagęszczalności popiołu lotnego za pomocą SSN
Autorzy:
Zabielska-Adamska, K.
Sulewska, M. J.
Powiązania:
https://bibliotekanauki.pl/articles/231108.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
krzywa zagęszczalności
popiół lotny
zagęszczalność
parametr zagęszczalności
parametr geotechniczny
sieć neuronowa sztuczna
modelowanie numeryczne
ANN
compaction curve
fly ash
compactibility
compaction parameter
geotechnical parameter
artificial neural network
numerical modeling
SSN
Opis:
The use of fly ash as a material for earth structures involves its proper compaction. Fly ash compaction tests have to be conducted on separately prepared virgin samples because spherical ash grains are crushed during compaction, so the laboratory compaction procedure is time-consuming and laborious. The aim of the study was to determine the neural models for prediction of fly ash compaction curve shapes. The attempt of applying the artificial neural networks type MLP was made. ANN inputs were new-created variables - principal components dependent on grain-size distribution (as D10-D90 and uniformity and curvature coefficients), compaction method, and fly ash specific density. The output vectors were presented by coordinates of generated compaction curve points. Each point was described by two independent ANNs. Using ANN-based modelling method, models which enable establishing the approximate compaction curve shape were obtained.
Wykorzystanie popiołu lotnego do konstrukcji ziemnych wymaga jego właściwego zagęszczenia. Zagęszczanie powoduje wzrost gęstości gruntu, zwiększa jego wytrzymałość i zdolność do przenoszenia obciążeń, a także zmniejsza ściśliwość i przepuszczalność. Oznaczenie zagęszczalności popiołu lotnego musi być przeprowadzane na próbkach jednokrotnie zagęszczanych, ponieważ sferyczne ziarna popiołu są niszczone w trakcie ubijania, w związku z tym, laboratoryjne ustalenie krzywej zagęszczalności popiołu jest bardzo czasochłonne. Celem artykułu było wykorzystanie modelowania neuronowego do prognozy kształtu krzywej zagęszczalności popiołu lotnego. Podjęto próbę zastosowania sztucznych sieci neuronowych SSN typu MLP do opisu punktów krzywej zagęszczalności. Każdy punkt krzywej został opisany przez dwie niezależne SSN. Wykorzystano SSN o różnych wejściach, którymi były nowo utworzone zmienne- składowe główne, zależne od uziarnienia (średnic efektywnych d10-d90 oraz wskaźników jednorodności i krzywizny uziarnienia), metody zagęszczenia oraz gęstości właściwej szkieletu gruntowego pdi. Wektorami wyjścia były współrzędne punktów krzywej zagęszczalności popiołu lotnego. Najlepszymi sieciami neuronowymi były sieci o topologii: 6-3-1, 6-2-1 i 6-4-1 dla prognozy wartości wilgotności wi, oraz 5-3-1 i 6-3-1 dla predykcji wartości gęstości objętościowej szkieletu gruntowego. Uzyskano sieci neuronowe o zadowalającej precyzji, szczególnie w przypadku wartości pdi. Modelowanie krzywej za pomocą SSN umożliwiło ustalenie przybliżonego kształtu krzywej zagęszczalności popiołu lotnego.
Źródło:
Archives of Civil Engineering; 2012, 58, 1; 57-69
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies