Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Large amplitude" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On the Efficiency of Differential Transformation Method to the Solutions of Large Amplitude Nonlinear Oscillation Systems
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Adeleye, O. A.
Alozie, S. I.
Salawu, S. A.
Salami, M. O.
Powiązania:
https://bibliotekanauki.pl/articles/1031949.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Analytical solution
Differential transformation method
Large amplitude
Oscillation system
Strong nonlinearity
Opis:
In this work, the efficiency of differential transformation method to the solutions of large amplitude nonlinear oscillatory systems is further established. Two cases of oscillation systems, nonlinear plane pendulum and pendulum in a rotating plane are considered. Without any linearization, discretization or series expansion of the sine and cosine of the angular displacement in the nonlinear models of the systems, the differential transformation method with Padé approximant is used to provide analytical solutions to the nonlinear problems. Also, the increased predictive power and the high level of accuracy of the differential transformation method over the previous methods are presented. The extreme accuracy and validity of the analytical solutions obtained by the differential transformation method are shown through comparison of the results of the solution with the corresponding numerical solutions obtained by fourth-fifth-order Runge-Kutta method. Also, with the aid of the analytical solutions, parametric studies were carried to study the impacts of the model parameters on the dynamic behavior of the large-amplitude nonlinear oscillation system. The method avoids any numerical complexity and it is very simple, suitable and useful as a mathematical tool for dealing the nonlinear problems.
Źródło:
World Scientific News; 2020, 139, 1; 1-60
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear Analysis of a Large-Amplitude Forced Harmonic Oscillation System using Differential Transformation Method-Padé Approximant Technique
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Oyekeye, M. O.
Folorunsho, S. S.
Powiązania:
https://bibliotekanauki.pl/articles/1031931.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Large amplitude; Oscillation system; Strong nonlinearity; Forced vibration; Differential transformation method-Padé approximant techniques
Opis:
This work presents the nonlinear analysis of forced harmonic oscillation system using differential transformation method-Padé approximant techniques. Without any series expansion of the included sine and cosine of the angular displacement in the nonlinear model of the system, an improved analytical solution of the dynamic model is presented. The high level of accuracy and validity of the analytical solutions obtained by the differential transformation method are shown through comparison of the results of the solution with the corresponding numerical solutions obtained by fourth-fifth-order Runge-Kutta method, homotopy perturbation method and energy balance methods. Also, with the aid of the analytical solutions, parametric studies are carried to study the impacts of the model parameters on the dynamic behavior of the large-amplitude nonlinear oscillation system. The method avoids any numerical complexity and it is very simple, suitable and useful as a mathematical tool for dealing the nonlinear problems.
Źródło:
World Scientific News; 2020, 140; 139-155
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies