Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "irradiance" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Solar radiation in the Baltic Sea
Autorzy:
Dera, J.
Wozniak, B.
Powiązania:
https://bibliotekanauki.pl/articles/48691.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
Baltic Sea
chlorophyll a
eutrophic area
evaporation
marine environment
natural irradiance
photochemical process
photosynthesis
short-term fluctuation
solar radiation
stratification
underwater irradiance
vertical distribution
Opis:
The influx of solar radiation to the Baltic Sea and its penetration into its waters is described on the basis of selected results of optical and bio-optical studies in the Baltic published by various authors during the past ca 50 years. The variability in the natural irradiance of this sea is illustrated on time scales from short-term fluctuations occurring during a single day to differences in mean monthly values over a period of many years. Data on variability of the proportions between UV, VIS and IR energy in the light reaching the sea surface are also discussed. Long-term monthly mean values of the incident solar radiation flux at the surface of the Baltic Proper are given; they were obtained from meteorological and solar radiation measurements and model approximations. The transmittances of these mean monthly radiation fluxes across the surface of the Baltic are given, as are the typical energy and spectral characteristics of the underwater irradiance, its attenuation with depth in the sea and the associated euphotic zone depths, as well as typical ranges of variability of these characteristics in different Baltic basins. Some of these characteristics are illustrated by typical empirical data. These mean values are not fully representative, however, because with the sole use of classical in situ measurement methods from on board research vessels in the Baltic, it has not been possible to gather a sufficiently representative set of empirical data that would adequately reflect the variability of the optical haracteristics of all the basins of this sea. The article goes on to introduce the statistical model of vertical distributions of chlorophyll a concentration in the Baltic and the bio-otical model of Baltic Case 2 waters, the use of which contribute very significantly to this description of the optical characteristics and will enable this data set to be hugely expanded to include all the Baltic basins. This opportunity is presented by the optical parameterization of Baltic Case 2 waters, i.e. by the mathematical formulas of the model linking the coefficient of attenuation of downward irradiance with the surface chlorophyll a concentration, as well as the method developed for the efficient and systematic satellite remote sensing of the chlorophyll a concentration over the entire Baltic Sea area.
Źródło:
Oceanologia; 2010, 52, 4
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dependence of the photosynthesis quantum yield in oceans on environmental factors
Autorzy:
Wozniak, B.
Dera, J.
Ficek, D.
Ostrowska, M.
Majchrowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/48279.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
primary production
water temperature
quantum yield
environmental factor
bio-optical modelling
nutrient content
phytoplankton
chlorophyll
irradiance
photosynthesis
Opis:
Statistical relationships between the quantum yield of photosynthesis and selected environmental factors in the ocean have been studied. The underwater irradiance, nutrient content, water temperature and water trophicity (i.e. the surface concentration of chlorophyll Ca(0)) have been considered, utilizing a large empirical data base. On the basis of these relationships, a mathematical model of the quantum yield was worked out in which the quantum yield Φ is expressed as a product of the theoretical maximum quantum yield ΦMAX = 0.125 atomC quanta−1 and six dimensionless factors. Each of these factors fi appears to be, to a sufficiently good approximation, dependent on one or two environmental factors and optical depth at most. The model makes it possible to determine the quantum yield from known values of these environmental factors. Empirical verification of the model yielded a positive result – the statistical error of the approximate values of the quantum yield Φ is 42%.
Źródło:
Oceanologia; 2002, 44, 4
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling light and photosynthesis in the marine environment
Autorzy:
Wozniak, B.
Dera, J.
Ficek, D.
Majchrowski, R.
Ostrowska, M.
Kaczmarek, S.
Powiązania:
https://bibliotekanauki.pl/articles/47660.pdf
Data publikacji:
2003
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
primary production
pigment
underwater irradiance
marine environment
quantum yield
remote sensing algorithm
bio-optical modelling
photoacclimation
phytoplankton
chromatic acclimation
light absorption
photosynthesis
Opis:
The overriding and far-reaching aim of our work has been to achieve a good understanding of the processes of light interaction with phytoplankton in the sea and to develop an innovative physical model of photosynthesis in the marine environment,suita ble for the remote sensing of marine primary production. Unlike previous models,the present one takes greater account of the complexity of the physiological processes in phytoplankton. We have focused in particular on photophysiological processes,whic h are governed directly or indirectly by light energy,or in which light, besides the nutrient content in and the temperature of seawater,is one of the principal limiting factors. To achieve this aim we have carried out comprehensive statistical analyses of the natural variability of the main photophysiological properties of phytoplankton and their links with the principal abiotic factors in the sea. These analyses have made use of extensive empirical data gathered in a wide diversity of seas and oceans by Polish and Russian teams as well as by joint Polish-Russian expeditions. Data sets available on the Internet have also been applied. As a result,a set of more or less complex,semi-empir ical models of light-stimulated processes occurring in marine phytoplankton cells has been developed. The trophic type of sea, photo-acclimation and the production of photoprotecting carotenoids,c hromatic acclimation and the production of various forms of chlorophyll-antennas and photosynthetic carotenoids,cell adaptation by the package effect, light absorption, photosynthesis, photoinhibition,the fluorescence effect,a nd the activation of PS2 centres are all considered in the models. These take into account not only the influence of light,but also, indirectly,tha t of the vertical mixing of water; in the case of photosynthesis,the quantum yield has been also formulated as being dependent on the nutrient concentrations and the temperature of seawater. The bio-optical spectral models of irradiance transmittance in case 1 oceanic waters and case 2 Baltic waters,dev eloped earlier,a lso are described in this paper. The development of the models presented here is not yet complete and they all need continual improvement. Nevertheless,w e have used them on a preliminary basis for calculating various photosynthetic characteristics at different depths in the sea,su ch as the concentration of chlorophyll and other pigments, and primary production. The practical algorithm we have constructed allows the vertical distribution of these characteristics to be determined from three input data: chlorophyll a concentration,irradiance, and temperature at the sea surface. Since all three data can be measured remotely,ou r algorithm can be applied as the ‘marine part’ of the remote sensing algorithms used for detecting marine photosynthesis.
Źródło:
Oceanologia; 2003, 45, 2
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
SatBaltyk – A Baltic environmental satellite remote sensing system – an ongoing project in Poland. Part 2: Practical applicability and preliminary results
Autorzy:
Wozniak, B.
Bradtke, K.
Darecki, M.
Dera, J.
Dudzinska-Nowak, J.
Dzierzbicka-Glowacka, L.
Ficek, D.
Furmanczyk, K.
Kowalewski, M.
Krezel, A.
Majchrowski, R.
Ostrowska, M.
Paszkuta, M.
Ston-Egiert, J.
Stramska, M.
Zapadka, T.
Powiązania:
https://bibliotekanauki.pl/articles/48019.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
Baltic ecosystem
Baltic Sea
energy influx
irradiance condition
marine optics
photosynthesis
plant community
Polska
practical application
preliminary result
radiation balance
remote sensing
SatBaltyk project
satellite monitoring
sea surface
solar energy
Opis:
This paper is the second part of the description of the first stage of the SatBałtyk project’s implementation. Part 1 (Woźniak et al. 2011, in this issue) presents the assumptions and objectives of SatBałtyk and describes the most important stages in the history of our research, which is the foundation of this project. It also discusses the operation and general structure of the SatBałtyk system. Part 2 addresses various aspects of the practical applicability of the SatBałtyk Operational System to Baltic ecosystem monitoring. Examples are given of the Baltic’s characteristics estimated using the preliminary versions of the algorithms in this Operational System. At the current stage of research, these algorithms apply mainly to the characteristics of the solar energy influx and the distribution of this energy among the various processes taking place in the atmosphere-sea system, and also to the radiation balance of the sea surface, the irradiance conditions for photosynthesis and the condition of plant communities in the water, sea surface temperature distributions and some other marine phenomena correlated with this temperature. Monitoring results obtained with these preliminary algorithms are exemplified in the form of distribution maps of selected abiotic parameters of the Baltic, as well as structural and functional characteristics of this ecosystem governed by these parameters in the Baltic’s many basins. The maps cover practically the whole area of the Baltic Sea. Also given are results of preliminary inspections of the accuracy of the magnitudes shown on the maps. In actual fact, the errors of these estimates are relatively small. The further practical application of this set of algorithms (to be gradually made more specific) is therefore entirely justified as the basis of the SatBałtyk system for the effective operational monitoring of the state and functioning of Baltic ecosystems. This article also outlines the plans for extending SatBałtyk to include the recording of the effects and hazards caused by current and expected storm events in the Polish coastal zone.
Źródło:
Oceanologia; 2011, 53, 4
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies