- Tytuł:
-
Estymacja parametrów menzurandu dla danych z rozkładów niesymetrycznych metodą maksymalizacji wielomianu (PMM)
Estimation of measurand parameters for data from asymmetric distributions by polynomial maximization method (PMM) - Autorzy:
-
Warsza, Z. L.
Zabolotnii, S. W. - Powiązania:
- https://bibliotekanauki.pl/articles/277748.pdf
- Data publikacji:
- 2018
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
- Tematy:
-
estymator
rozkład niesymetryczny
wielomian stochastyczny
wartość średnia
wariancja
skośność
kurtoza
estimator
non-Gaussian model
stochastic polynomial
means value
variance
skewness
kurtosis - Opis:
-
Przedstawiono sposób wyznaczania estymatorów wartości i niepewności menzurandu niekonwencjonalną metodą maksymalizacji wielomianu stochastycznego (PMM) dla próbki danych pomiarowych pobranych z populacji modelowanej zmienną losową o rozkładzie niesymetrycznym. W metodzie PMM stosuje się statystykę wyższego rzędu i opis z użyciem momentów lub kumulantów. Wyznaczono wyrażenia analityczne dla estymatorów wartości i niepewności standardowej typu A menzurandu za pomocą wielomianu stopnia r = 2. Niepewność standardowa wartości menzurandu otrzymana metodą PPM zależy od skośności i kurtozy rozkładu. Jest ona mniejsza od średniej arytmetycznej wyznaczanej wg przewodnika GUM i bliższa wartości teoretycznej dla rozkładu populacji danych. Jeśli rozkład ten jest nieznany, to estymatory momentów i kumulantów wyznacza się z danych pomiarowych próbki. Sprawdzono skuteczność metody PMM dla kilku podstawowych rozkładów.
The non-standard method for evaluating estimators of the value and uncertainty type A for measurement data sampled from asymmetrical distributed with a priori partial description (unknown PDF) is presented. This method of statistical estimation is based on the mathematical apparatus of stochastic polynomials maximization and uses the higher-order statistics (moment & cumulant description) of random variables. The analytical expressions for finding estimates and analyze their accuracy to the degree of the polynomial r = 2 are obtained. It is shown that the uncertainty of estimates received for polynomial is generally less than the uncertainty of estimates obtained based on the mean (arithmetic average) according international guide GUM. Reducing the uncertainty of measurement depends on the skewness and kurtosis. On the basis of the Monte Carlo method carried out statistical modelling. Their results confirm the effectiveness of the proposed approach. - Źródło:
-
Pomiary Automatyka Robotyka; 2018, 22, 1; 49-56
1427-9126 - Pojawia się w:
- Pomiary Automatyka Robotyka
- Dostawca treści:
- Biblioteka Nauki