Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pokrycie" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Zastosowanie obiektowo zorientowanej analizy obrazu (GEOBIA) wysokorozdzielczych obrazów satelitarnych w klasyfikacji obszaru miasta Krakowa
Using the object-based image analysis (GEOBIA) in the classification of the very high resolution satellite images of Krakow municipality
Autorzy:
Wężyk, P.
de Kok, R.
Szombara, S.
Powiązania:
https://bibliotekanauki.pl/articles/130169.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa (GEOBIA)
Ikonos
QuickBird
automatyzacja
pokrycie terenu
OBIA (Object Based Image Analysis)
automation
land use
Opis:
Technologie teledetekcyjne oraz systemy GIS osiągnęły obecnie poziom rozwoju umożliwiający pełna implementacje automatycznych metod klasyfikacji oraz procesów kontroli i aktualizacji zasobów kartograficznych będących w posiadaniu administracji publicznej. Dane teledetekcyjne pozyskiwane nowoczesnymi metodami takimi jak: lotnicze kamery cyfrowe, skanery hiperspektralne, LiDAR badz VHRS - pozwalają na poprawne skonstruowanie procesu wspomagania podejmowania decyzji na poziomie lokalnym i regionalnym takich jak np. miejscowe plany zagospodarowania przestrzennego. Ogromne zbiory danych (np. LiDAR, VHRS) muszą być coraz częściej poddawane automatycznym procesom ich przetwarzania. Obiektowo zorientowana analiza obrazu (ang. Object Based Image Analysis; akronim: GEOBIA) - zwana potocznie klasyfikacja obiektowa, wykorzystuje zaawansowane algorytmy segmentacji rastra. Rozstrzygają one o liczbie generowanych obiektów na podstawie wartości jaskrawości piksela oraz „właściwości geometrycznych” (np. kształtu, grupowania się pikseli w homogeniczne obiekty, zwartości, etc). W kolejnych krokach obiekty te są klasyfikowane na podstawie licznych zależności i właściwości, jak np. parametru homogeniczności czy stosunku długości granic do powierzchni (wykrywanie krawędzi, budynków, działek etc). Klasyfikacja obiektowa może przyjąć strukturę hierarchiczna, to znaczy raz sklasyfikowane obiekty mogą posłużyć do stworzenia nowego wyższego hierarchicznie poziomu. Taka metodyka pozwala na przygotowanie scenariuszy postepowania klasyfikacyjnego zapisywanych do plików zwanych protokołami w oprogramowaniu DEFNIENS. Nowatorskie podejście do kwestii klasyfikacji obrazu bez potrzeby wykorzystywania pól treningowych zostało już potwierdzone wieloma projektami naukowymi i ich wdrożeniami (Wężyk, de Kok, 2005; de Kok, Wężyk, 2006). W prezentowanej pracy do przeprowadzenia klasyfikacji wykorzystano 2 sceny IKONOS z dnia 25.06.2005 roku (łączny obszar 194,7 km2) oraz 1 scenę QuickBird z dnia 07.09.2006 roku (167,7 km2). Prace zostały zlecone przez Biuro Planowania Przestrzennego UM Krakowa w listopadzie 2006 roku. Obrazy VHRS poddano ortorektyfikacji (Aplication Master 5.0, Inpho) w oparciu o współczynniki RPC ale także punkty dostosowania GCP pozyskane z ortofotomap Phare 2001 oraz NMT przekazanego przez BPP UMK (Wężyk et al., 2006). Do analizy obrazów VHRS wykorzystano kanał panchromatyczny (PAN) oraz wielospektralne (MS) zakresy promieniowania. Wstępne przetwarzanie kanałów PAN polegało na zastosowaniu filtrów krawędziowych (np. Lee Sigma), w wyniku działania których otrzymano tzw. obrazy pochodne wykorzystane w procesie segmentacji. Inne obrazy biorące udział w tym złożonym procesie składającym się z 11 kroków to: poszczególne kanały MS (Blue, Green, Red, NIR), dla których wykonano analizę głównych składowych (ang. Principal Component Analysis), mapa ewidencyjna (obraz rastrowy) wykorzystywana w projekcie kartowania zieleni rzeczywistej Krakowa (służąca głównie klasyfikacji budynków przy wykorzystaniu PC3), rastrowa warstwa sieci dróg pochodząca z wektoryzacji ekranowej VHRS i z map ewidencyjnych. W toku uzgodnień z BPP UMK podjęto decyzje o przyjęciu dwóch poziomów hierarchicznych klas pokrycia terenu. Poziom 1 składał się z 9-ciu klas zajmujących odpowiednio: tereny zainwestowane – 17,42%, zieleń wysoka – 24,99%, zieleń niska – 44,31%, zieleń terenów sportowych oraz ogródków działkowych – 1,39%, zbiorniki wodne i rzeki – 1,94%, infrastruktura drogowa – 3,48%, hałdy + wysypiska + odsłonięta gleba – 0,84%, grunty orne i uprawy – 5,35% oraz cień – 0,28% obszaru badan. Trzy klasy poziomu 1, tj.: tereny zainwestowane, zieleń niska i zieleń wysoka) zdecydowano się zaprezentować na wyższym – 2 poziomie szczegółowości. Wraz z pozostałymi klasami poziom ten składał się łącznie z 22 klas. Osiągnięte rezultaty potwierdziły szerokie możliwości stosowania automatycznych metod OBIA bazujących na VHRS i innych informacjach pochodzących z systemów GIS oraz z zasobów geodezyjnokartograficznych w celu ich aktualizacji.
Recent developments in Remote Sensing and GIS have reached maturity which allows to implement the research results into standardized process flows for updating and checking the municipality cadastral information. The database containing the city cadastre already handles data fusion methods itself. Available information considerably enhance information extraction from new data collections with high quality sensors such as LiDAR, photogrammetrical imagery and VHRS data. Huge amounts of available data must be processed in sequences to keep them handable. Transferable protocols for automatic handling of VHRS data can now be put into a full production process to assist the workflow of other image data from airborne platforms and integrate these GIS output into further cadastral GIS analysis. The data fusion within this project allows a highly detailed description of the city status-quo and the basis for change detection. Further these results are besides a very important archival inventory also a basis for decision support, now and in the future. The whole workflow was of a chain of previous research projects which were put into a commercial workflow. This study shows an experience report on, how the product chain was built-up and what type of products were delivered to the municipality of Krakow (Poland).
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17b; 791-800
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja pokrycia terenu metodą OBIA z wykorzystaniem zobrazowań satelitarnych RapidEye
Land cover mapping based on OBIA of RapidEye satellite data
Autorzy:
Wężyk, P.
Wójtowicz-Nowakowska, A.
Pierzchalski, M.
Mlost, J.
Szwed, P.
Powiązania:
https://bibliotekanauki.pl/articles/131104.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
wysokorozdzielcze zobrazowania satelitarne
RapidEye
analiza obiektowa obrazu
OBIA
segmentacja
eCognition
pokrycie terenu
high-resolution satellite images
object-based image analysis
segmentation
land use
land cover
Opis:
Wraz z rozwojem teledetekcji i wysokorozdzielczych obrazów satelitarnych istotnym wyzwaniem dla współczesnych badań stało się zautomatyzowanie procesu klasyfikacji pozyskiwanych danych. Jedną z bardzo szybko rozwijających się metod automatycznej klasyfikacji jest analiza obiektowa obrazu (OBIA, ang. Object Based Image Analysis). Celem pracy było wykorzystanie metody OBIA w przygotowaniu aktualnej mapy pokrycia terenu będącej ważnym elementem dokumentacji niezbędnej dla studium uwarunkowań budowy nowej hydroelektrowni na środkowym odcinku Wisły. W pracy wykorzystano wysokorozdzielcze zobrazowania satelitarne RapidEye (5 kanałów spektralnych, w tym dwa w zakresie NIR) pokrywające obszar około 5.300 km2 oraz oprogramowanie eCognition (TRIMBLE Geospatial) a także warstwy informacyjne GIS. W wyniku przeprowadzonych analiz uzyskano mapę pokrycia terenu reprezentowaną przez 29 klas. Największą powierzchnię terenu badań zajmują obszary użytkowane rolniczo (59.5%, z czego 35.5% grunty orne) oraz lasy (29.1%, z czego 21.4% drzewostany iglaste), co świadczy o charakterze tej jednostki fizjograficznej. Analiza dokładności uzyskanych wyników wykazała, iż metoda OBIA daje bardzo dobre rezultaty (współczynnik Kappa równy 0.8) w daleko zautomatyzowanym procesie generowania aktualny map pokrycia terenu dla obszarów centralnej Polski na podstawie obrazów satelitarnych RapidEye.
Parallel with the development of remote sensing and high resolution satellite images major challenge for modern research has become almost to automate the classification of the data obtained. One of the most rapidly developing methods for automatic classification is object-oriented image analysis (OBIA, Object Based Image Analysis). The aim of the present study was to use the OBIA method to create the current land cover map which is part of the documentation necessary for new water power-station on the middle part of Vistula river. In this paper the RapidEye satellite images (5 spectral bands, two in the NIR range) covering an area of about 5 300 km2 and eCognition Developer (TRIMBLE) software were used. As a result of the analysis and land cover map was obtained, represented by 29 classes. The largest area is covered by agricultural land (59.5%; arable land – 35.52%) and forests (29.1%; mainly coniferous 21.4%), reflecting the rural – forestry character of the area. Analysis of the accuracy of the obtained results has shown that the OBIA method gives quite good results (Kappa coefficient equal to 0.8) for land cover mapping of central part of Poland based on the RapidEye imageries.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 489-500
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monitorowanie zasięgu roślinności o charakterze leśnym w obszarach rekultywowanych z zastosowaniem zobrazowań satelitarnych Sentinel-2
Monitoring the spatial range of forested areas in the reclaimed sites using Sentinel-2 images
Autorzy:
Szostak, M.
Knapik, K.
Likus-Cieślik, J.
Wężyk, P.
Pietrzykowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/980307.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Leśne
Tematy:
tereny rekultywowane
zadrzewienia
zasieg wystepowania
pokrycie terenu
monitoring
satelita Sentinel-2
obrazowanie
przetwarzanie obrazow
wektoryzacja
analiza przestrzenna
image processing
manual vectorization
spatial analyses
reclamation
Opis:
Presented research investigates the possibility of applying the newest, free available satellite images Sentinel−2 for the automation of land use/cover (LULC) mapping in reclaimed areas, mainly in the aspect of monitoring forested areas. The study was performed for the former sulphur mines: ‘Machów’ (871.7 ha of the dump area after the opencast strip mine) and ‘Jeziórko’ (216.5 ha of the afforested area after the borehole exploitation). These areas are characterized by a diverse terrain structure and vegetation cover as the result of reclamation. The applied directions of reclamation were agro−forestry for the Sulphur Mine ‘Machów’ and forestry for the Sulphur Mine ‘Jeziórko’. We verified whether processing of Sentinel−2 data allows for reliable LULC classification – mainly identification forested areas in relation to the LULC mapping prepared by manual vectorization of orthophotomaps. Obtained classification results for Sentinel−2 data were also compared to the results of Landsat 8 images processing. The results of Sentinel−2 images classification showed correct graphical representation of the LULC classes, especially forested areas, in the relation to the results of applied on−screen vectorization of aerial orthophotomaps – better than results of the Landsat 8 images processing. The area of the mail class ‘Forests’ as a result of classification Sentinel−2 and Landsat 8 images compared to the results of manual on−screen vectorization of the orthophomaps shows differences: 5.4% – Sentinel−2, 12.8% – Landsat 8 for Sulphur Mine ‘Machów’ and 1.8% – Sentinel−2, 8.8% – Landsat 8 for Sulphur Mine ‘Jeziórko’. Research indicates the possibility of automation of LULC classification using Sentinel−2 images. It could be very useful for LULC changes monitoring in reclaimed areas, mainly in the aspect of forested areas mapping as a result of way of reclamation.
Źródło:
Sylwan; 2019, 163, 01; 55-61
0039-7660
Pojawia się w:
Sylwan
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapa zmian pokrycia terenu małopolski 1986-2011 wykonana w oparciu o klasyfikację obiektową obrazów satelitarnych Landsat oraz RapidEye
Map of land use / land cover changes in malopolska voivodeship in 1986-2010 created by object based image analysis of Landsat and RapidEye satellite images
Autorzy:
Wężyk, P.
Wójtowicz-Nowakowska, A.
Pierzchalski, M.
Mlost, J.
Szafrańska, B.
Powiązania:
https://bibliotekanauki.pl/articles/130712.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa
OBIA
Landsat
RapidEye
użytkowanie terenu
pokrycie terenu
analiza przestrzenna
GIS
segmentacja
object-oriented classification
land use
land cover
spatial analysis
temporal analysis
segmenatation
Opis:
Changes in land use / land cover are the result of interaction between natural processes and human activity. Using GIS analysis to estimate the dynamic of these changes we can detect former trends and their simulation in the future. Diagnosed directions of changes can be used e.g. to create local plans of spatial management or region growth policy. Main goal of this study was to diagnose main trends of changes in land use / land cover in Malopolska voivodeship in last 25 years (1986-2010). Results were shown as statistics and map compositions. Project was created based on RapidEye and LANDSAT 5 TM satellite data and aerial imagery from 2009-2010. The best way to process huge amount and various data was to use Object Based Image Analysis (OBIA). As the results of classification we received 10 classes of land use for both terms of analyses (1986-1987 and 2009-2010). Identified classes were: bare soil, grass-covered areas, urban areas, rivers and watercourses, coniferous forest, leaf forest, peatbog, and other areas. Results show, that especially 2 classes arisen much: forest (4.39%) and urban areas (2.40%), mostly at the expanse of agricultural (-3.60%) and grass-covered areas (-1.18%). Based on results we can say, that changes detected in past 25 years in Malopolska region, which we can also notice today, agree with general trends of landscape changes, that we can observe in Poland for the last 3 decades. These general changes are: renewed succession of forest on areas where agricultural production discontinued; also intense development of road infrastructure. Object Based Image Analysis allowed to realize these study for area of more than 15 000 km2 for only a few weeks.
Zmiany pokrycia terenu i użytkowania ziemi są rezultatem wzajemnego oddziaływania na siebie złożonych procesów przyrodniczych oraz społeczno-ekonomicznych. Analizy przestrzenne GIS dynamiki tych zmian umożliwiają wykrycie występujących w przeszłości trendów i procesów oraz ich symulację dla nadchodzącego okresu. Zdiagnozowane kierunki przemian krajobrazu mogą zostać wykorzystane m.in. przy tworzeniu lokalnych planów zagospodarowania przestrzennego, czy generalnie kreowaniu polityki rozwoju regionów. Celem prezentowanego opracowania było zdiagnozowanie głównych trendów przemian pokrycia terenu województwa małopolskiego na przestrzeni ostatnich dwudziestu pięciu lat (19862011) oraz ich statystyczne i graficzne zaprezentowanie w postaci kompilacji map numerycznych. Projekt wykonano w oparciu o dane teledetekcyjne: zobrazowania satelitarne RapidEye i LANDSAT TM oraz lotnicze ortofotomapy (PZGiK) z lat 2009 - 2010. Duża ilość i różnorodność danych wymusiła zastosowanie obiektowego przetwarzania danych teledetekcyjnych, tj. klasyfikacji OBIA (ang. Object Based Image Analysis). W wyniku przeprowadzanej klasyfikacji otrzymano 10 klas pokrycia i użytkowania terenu dla dwóch terminów badawczych (1986-87 oraz 2010-11), tj.: grunty orne, użytki zielone, tereny zurbanizowane, rzeki i cieki, zbiorniki wodne, lasy iglaste, lasy liściaste, zadrzewienia i zakrzewienia, tereny różne oraz torfowiska. Wykazano, iż na obszarze Małopolski wystąpiło znaczne zwiększenie powierzchni lasów (wzrost o 4.4%) oraz terenów zurbanizowanych (wzrost o 2.4%), głównie kosztem powierzchni gruntów rolnych (ubytek o 3.6%) oraz trwałych użytków zielonych (ubytek o 1.2%). Otrzymane wyniki pozwoliły wysunąć wniosek, iż zmiany jakie zachodziły w przeciągu 25 lat oraz te, z którymi wciąż mamy do czynienia w województwie małopolskim, pokrywają się z ogólnymi kierunkami i trendami przemian krajobrazu obserwowanymi w Polsce w ostatnich trzech dekadach, tj. procesami sukcesji wtórnej zbiorowisk leśnych na gruntach, na których zaprzestano produkcji rolnej oraz związanych z inwestycjami infrastruktury drogowej i kolejowej. Zastosowanie automatycznej klasyfikacji obiektowej oraz analiz przestrzennych GIS pozwoliło na realizację opracowania dla obszaru ponad 15.000 km2 w ciągu zaledwie kilku tygodni.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, 25; 273-284
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies