Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sprinkling" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Wpływ ciśnienia zasilania spiralnej dyszy wirowej na kąt rozpylenia i gęstość zroszenia strumienia wody
Effects of the Supply Pressure in a Spiral Vortex Nozzle on a Dispersion Angle and the Sprinkling Density of Water Jet
Autorzy:
Majder-Łopatka, M.
Węsierski, T.
Wąsik, W.
Binio, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/136853.pdf
Data publikacji:
2017
Wydawca:
Szkoła Główna Służby Pożarniczej
Tematy:
rozpylanie
dysze spiralne
parametry makrostruktury
kąt rozpylenia
gęstość strumienia cieczy
spraying
spiral whirl nozzle
macrostructure parameters
spray angle
sprinkling density
Opis:
Rozpylone ciecze stosuje się w wielu gałęziach gospodarki. Mgłę wodną wykorzystuje się między innymi w ochronie przeciwpożarowej w aktywnych systemach zabezpieczeń oraz do absorpcji substancji niebezpiecznych. W zależności od przeznaczenia, producenci dysz rozpylających dążą do uzyskania odpowiedniej makrostruktury i mikrostruktury rozproszonej cieczy. Parametry zewnętrzne strumienia cieczy, takie jak kąt rozpylenia i gęstość zroszenia określają równomierność rozkładu cieczy w strudze kropel i zależą od typu dyszy rozpylającej oraz parametrów przepływu cieczy. W artykule przedstawiono wyniki badań określające wpływ ciśnienia zasilania na rozkład cieczy w strudze kropel i kąt rozproszenia. W badaniach wykorzystano dyszę wirową spiralną TF -6, dla której wyznaczono charakterystykę przepływową p = f(Q). Badania przeprowadzono w sześciennej komorze o wymiarach 1200 mm. Pomiary kąta rozproszenia i gęstości zroszenia dokonano przy ciśnieniu zasilania: 2 bary, 4 bary i 6 barów. Rozkład cieczy w strudze kropel określono dla dwóch odległości od wylotu dyszy: 600 mm i 1000 mm. Przeprowadzone badania wskazują, że ciśnienie zasilania jest istotnym parametrem wpływającym na rozkład cieczy i zasięg strugi kropel. Dla badanej dyszy spiralnej o współczynniku przepływu K = 3,082 [dm3/min·bar0,5] największy kąt rozpylenia wynoszący 610 uzyskano przy ciśnieniu p = 6 bar. Wraz ze wzrostem ciśnienia zasilania i odległości od wylotu dyszy pole powierzchni zraszania ulegało zwiększeniu. Uzyskane rozkłady gęstości zroszenia wskazują, że badana dysza tworzy strugę w kształcie stożka o nierównomiernym rozkładzie kropel. Wraz ze wzrostem ciśnienia zasilania odnotowano większe różnice między średnią wartością gęstości zroszenia a wartością maksymalną.
Sprays are widely used in many industries. A water mist is used for instance in active fire protection systems and to absorb hazardous substances. Manufacturers of spraying nozzles try to obtain appropriate macro- and microstructure of a spray, which depends on specific nozzle applications. External parameters of sprays, such as a dispersion angle or a sprinkling density specify, whether the liquid in a stream is equally distributed. These parameters depend also on a spray nozzle type and the flow parameters. In this paper ,the authors show the impact of supply pressure on the distribution of the liquid and the spray angle. In this study the spiral vortex nozzle type TF-6 was used. For this nozzle, flow characteristics p = f(Q) was established The study was conducted in a cubic chamber. The size of the chamber was 1200 mm. Both, the dispersion angle and the sprinkling density were measured using the supply pressure of 2, 4 and 6 bars. The distribution of the liquid stream was observed for two distances measured from the nozzle head, which were equal to 600 mm and 1000 mm. Conducted studies show that the supply pressure has a strong impact on the liquid distribution and the droplet stream range. For the spiral vortex nozzle with flow parameter of K = 3,082 [dm3/min·bar0,5] the largest spray angle of 61 degrees was observed at the pressure p = 6 bars. Increase in both supply pressure and the distance from the nozzle head widen the spraying area. Obtained distribution of the spraying density indicates that the nozzle creates the cone-shaped stream with an uneven distribution of the droplets. Increase in the supply pressure leads to the larger differences between the average spray density and the maximum value.
Źródło:
Zeszyty Naukowe SGSP / Szkoła Główna Służby Pożarniczej; 2017, 1, 61; 137-151
0239-5223
Pojawia się w:
Zeszyty Naukowe SGSP / Szkoła Główna Służby Pożarniczej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of influence of the spray angle on sprinkling intensity distribution in the spray stream produced by the selected Turbo type Ffire-hose nozzle
Analiza wpływu kąta rozpylenia na rozkład intensywności zraszania w strumieniu rozpylonym wytwarzanym przez wybraną prądownicę wodną typu Turbo
Autorzy:
Piątek, P.
Gałaj, J.
Wąsik, W.
Powiązania:
https://bibliotekanauki.pl/articles/136518.pdf
Data publikacji:
2018
Wydawca:
Szkoła Główna Służby Pożarniczej
Tematy:
sprinkling intensity distribution
spray angle
fire-hose nozzle
spray streams
extinguishing efficiency
rozkład intensywności zraszania
kąt rozpylenia
prądownica wodna
strumienie rozpylone
skuteczność gaśnicza
Opis:
In the following article there has been assessed the influence of the spray angle on sprinkling intensity distribution in the spray water stream generated by the selected fire-hose nozzle PWT 52/1-2-3-4 type TURBOMASTER produced by AWG company. The research was performed in the open air in August and September 2017. The field of measurements was located in front of the gate of The Firefighting and rescue equipment laboratory. A slightly modified test stand, which is normally used for researching fire-hose nozzles, was used to carry out the experiments. The measurements of the sprinkling intensity were performed on the basis of the authorial improved test methodology patterned upon the guidelines included in the old Polish PN-89/M-51028 standard. The parameter of sprinkling intensity has been assessed in weight and volumetric way using the measuring containers. The digital angle measuring device was used to measure the spray angle. The following article presents only the results of research, which was carried out for two water flow rates 200 dm3 /min and 400 dm3 /min and three spray angles: 30°, 60° and 90°, but all experiments were performed for two different water flow rates (200 dm3 /min and 400 dm3 /min) and six spray angles (15°, 30°, 45°, 60°, 75° and 90°). Based on the results of the conducted research it has been clearly demonstrated that the spray angle is a very important parameter which has an influence on sprinkling intensity distribution in the spray water streams produced by the selected fire-hose nozzles. It was observed that along with the changes of the spray angle the values of many parameters, which describe sprinkling intensity distribution, have been changed. The following parameters have been adopted for this research: the value of the sprinkling area and its dimensions (shape), the maximum throw (range) of the produced spray streams and the maximum value of the sprinkling intensity. In the last part of this article a summary and some conclusions have been made, of both, academic significance and practical character. In addition, the necessity and validity of the subsequent research has been indicated, in particular, using modern fire-hose nozzles.
W artykule dokonano oceny wpływu kąta rozpylenia na rozkład intensywności zraszania w strumieniu rozpylonym, wytwarzanym przez wybraną prądownicę wodną PWT 52/1-2-3-4 typ TURBOMASTER, produkowaną przez firmę AWG. Badania wykonano na otwartej przestrzeni w okresie sierpnia i września 2017 r. Stanowisko badawcze zlokalizowano na placu przed bramą Pracowni Sprzętu Ratowniczo-Gaśniczego. Do przeprowadzenia doświadczeń wykorzystano częściowo zmodyfikowane stanowisko laboratoryjne, służące nominalnie do badania prądownic wodnych. Pomiarów intensywności zraszania dokonano wykorzystując autorsko udoskonaloną metodę badawczą pochodzącą ze starej polskiej normy PN-89/M-51028. Parametr ten określano w sposób wagowo-objętościowy z użyciem pojemników pomiarowych. Do pomiaru kąta rozpylenia wykorzystano kątomierz elektroniczny. W niniejszym artykule przedstawiono jedynie wyniki badań wykonanych dla wydajności 200 dm3 /min i 400 dm3 /min oraz trzech kątów rozpylenia: 30°, 60° i 90°, choć całość pomiarów została przeprowadzona dla sześciu różnych kątów rozpylenia (15°, 30°, 45°, 60°, 75° i 90°). Otrzymane rezultaty wskazują jednoznacznie, że kąt rozpylenia jest bardzo ważnym parametrem mającym wpływ na rozkład intensywności zraszania w strumieniach rozpylonych wytwarzanych przez prądownice wodne typu Turbo. Zaobserwowano bowiem, że wraz ze zmianą kąta rozpylenia, zmianie ulegają wartości wielu parametrów, opisujących rozkład intensywności zraszania. Do przeprowadzenia analizy przyjęto następujące wskaźniki: powierzchnię zraszania i jej wymiary (kształt), maksymalną długość rzutu prądu rozproszonego oraz maksymalną intensywności zraszania. Na koniec sformułowano wnioski istotne zarówno w aspekcie teoretycznym, jak i praktycznym. Ponadto wskazano konieczność i zasadność prowadzenia dalszych prac badawczych, zwłaszcza z użyciem nowoczesnych prądownic wodnych.
Źródło:
Zeszyty Naukowe SGSP / Szkoła Główna Służby Pożarniczej; 2018, 4, 68; 137-157
0239-5223
Pojawia się w:
Zeszyty Naukowe SGSP / Szkoła Główna Służby Pożarniczej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies