- Tytuł:
- Invariants and flow geometry
- Autorzy:
-
González-Dávila, J.
Vanhecke, L. - Powiązania:
- https://bibliotekanauki.pl/articles/965888.pdf
- Data publikacji:
- 1999
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
flow model spaces
normal, contact and curvature homogeneous flows
invariants and characterizations of special Riemannian manifolds
flows generated by a unit Killing vector field - Opis:
- We continue the study of Riemannian manifolds (M,g) equipped with an isometric flow $ℱ_ξ$ generated by a unit Killing vector field ξ. We derive some new results for normal and contact flows and use invariants with respect to the group of ξ-preserving isometries to charaterize special (M,g,$ℱ_ξ$), in particular Einstein, η-Einstein, η-parallel and locally Killing-transversally symmetric spaces. Furthermore, we introduce curvature homogeneous flows and flow model spaces and derive an algebraic characterization of Killing-transversally symmetric spaces by using the curvature tensor of special flow model spaces. All these results extend the corresponding theory in Sasakian geometry to flow geometry.
- Źródło:
-
Colloquium Mathematicum; 1999, 81, 1; 33-50
0010-1354 - Pojawia się w:
- Colloquium Mathematicum
- Dostawca treści:
- Biblioteka Nauki