Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "konfiguracja aerodynamiczna" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Aerodynamic characteristics of a straight wing with a spiroid wingtip device
Charakterystyka aerodynamiczna skrzydła prostego z urządzeniem spiroidalnym na końcówce skrzydła
Autorzy:
Kravchenko, Igor F.
Loginov, Vasyl V.
Ukrainets, Yevgene O.
Hluschenko, Pavlo A.
Powiązania:
https://bibliotekanauki.pl/articles/36439637.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Lotnictwa
Tematy:
lift drag ratio
flight range
flight duration
unmanned aerial vehicles
aerodynamic configuration
spiroid wingtip devices
spiroidalne końcówki skrzydeł
bezzałogowe statki powietrzne
doskonałość aerodynamiczna
zasięg lotu
długotrwałość lotu
konfiguracja aerodynamiczna
Opis:
Spiroid wingtip devices (WD) offer a promising way of improving the lift drag ratio of UAVs, but may on the other hand lead to negative aerodynamic interference of the wing with the WD and deterioration of the aerodynamic characteristics as compared to a wing without the WD. Determining the influence of the geometric parameters of a spiroid WD on aerodynamic wing characteristics, however, remains an understudied field. In our study, we investigated the influence of the following geometrical parameters on wing aerodynamic characteristics with WD: area, radius, camber angle, constriction, and pitch of the spiroid. We found that the positive effect of the WD is present at a relative radius r̅ > 0.05, as well as with an increase in the lift coefficient CL as a result of an increase in the proportion of inductive resistance. For example, with the Reynolds number Re = 2.1×105 for a rectangular wing with an aspect ratio θ = 5.12 equipped with a spiroid WD with r̅ = 0.15 the quality gain is almost 10% at CL = 0.5, and at CL = 0.7 is almost 20% and at CL = 0.7 - almost 20% compared to a wing without WD. Moreover, we found that a change in the camber angle WD θ provides an increase in the derivative of the lift coefficient with respect to the angle of attack in the range from θ = 0° to θ = 130°. By changing the camber angle, it is possible to increase the lift drag ratio of the layout up to 7.5% at θ = 90° compared to θ = 0° at the Reynolds number Re = 2.1×105. From the point of view of ensuring maximum lift drag ratio and minimum inductive drag, the angle θ = 90° is the most beneficial.
Spiroidalne końcówki skrzydeł (wingtip devices, WD) stanowią obiecującą metodę na poprawę współczynnika oporu aerodynamicznego bezzałogowych statków powietrznych (UAVs). Jednak z drugiej strony mogą prowadzić do negatywnej interferencji aerodynamicznej skrzydła z spiroidalną końcówką i pogorszenia charakterystyk aerodynamicznych w porównaniu do skrzydła bez końcówki. Określenie wpływu parametrów geometrycznych spiroidalnej końcówki na charakterystyki aerodynamiczne skrzydła pozostaje jednak nadal słabo zbadanym zagadnieniem. W pracy tej zbadano wpływ następujących parametrów geometrycznych na charakterystyki aerodynamiczne skrzydła z WD: powierzchnia, promień, kąt pochylenia, przewężenie i rzut spiroida. Stwierdziliśmy, że pozytywny wpływ WD występuje przy promieniu względnym r̅ > 0,05, jak również przy wzroście współczynnika siły nośnej CL w wyniku wzrostu udziału oporu indukowanego. Przykładowo, przy liczbie Reynoldsa Re = 2,1×105 dla skrzydła prostokątnego o wydłużeniu θ = 5,12 wyposażonego w spiroidalną końcówkę WD r̅ = 0,15 przyrost jakości wynosi przy CL = 0,5 prawie 10%, a przy CL = 0,7 prawie 20% i przy CL = 0,7 - prawie 20% w stosunku do skrzydła bez WD. Ponadto stwierdziliśmy, że zmiana kąta pochylenia WD θ zapewnia wzrost pochodnej współczynnika nośności względem kąta natarcia w zakresie od θ = 0° do θ = 130°. Poprzez zmianę kąta pochylenia możliwe jest zwiększenie doskonałości aerodynamicznej układu do 7,5% przy θ = 90° w stosunku do θ = 0° przy liczbie Reynoldsa Re = 2,1×105. Z punktu widzenia zapewnienia maksymalnej doskonałości aerodynamicznej i minimalnego oporu indukowanego kąt θ = 90° jest najkorzystniejszy.
Źródło:
Transactions on Aerospace Research; 2021, 2 (263); 46-62
0509-6669
2545-2835
Pojawia się w:
Transactions on Aerospace Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies