Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "analiza ilościowa" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Diagnozowanie stanu mięśni na podstawie analizy widmowej PJR
Diagnose of muscle condition on the basis of mup spectral analysis
Autorzy:
Dobrowolski, A.
Komur, P.
Tomczykiewicz, K.
Powiązania:
https://bibliotekanauki.pl/articles/327212.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
elektromiografia ilościowa
potencjał czynnościowy
jednostka ruchowa
analiza widmowa
quantitative electromyography
motor unit action potential
spectral analysis
Opis:
Statystyczne opracowanie wyników badania elektromiograficznego zapewnia w większości przypadków prawidłową klasyfikację patologii bez określenia stopnia ciężkości choroby. Celem rozpoczętych badań jest stworzenie aplikacji, która wykorzystując specjalnie opracowane algorytmy cyfrowego przetwarzania sygnałów, w sposób automatyczny i jednoznaczny wyznaczy rodzaj patologii oraz - być może - stopień uszkodzenia badanego mięśnia. Drugim celem publikacji jest uporządkowanie medycznych pojęć związanych z badaniami elektromiograficznymi w kontekście inżynierskim, co pozwoli ukonstytuować niezbędną płaszczyznę łączącą środowiska medyczne i techniczne.
The statistical study of the electromyography examination results, secure in most cases the correct classification of pathology without a grade of disease qualification. The aim of beginning works is to create an application, which applies dedicated digital signal processing algorithms, automatically and unambiguously determine the kind of pathology and perhaps the grade of disease. Another aim of this paper is to clarify medical concepts connected with electromyography examination in an engineering context. This allows us to form essential common ground linked to medical and technical environments.
Źródło:
Diagnostyka; 2006, 3(39); 95-100
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza widmowa potencjałów jednostek ruchowych
Spectral analysis of motor unit potentials
Autorzy:
Dobrowolski, A.
Komur, P.
Tomczykiewicz, K.
Powiązania:
https://bibliotekanauki.pl/articles/210152.pdf
Data publikacji:
2007
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
cyfrowe przetwarzanie sygnałów
elektromiografia ilościowa (QEMG)
potencjał czynnościowy jednostki ruchowej (PJR)
analiza widmowa
digital signal processing
quantitative electromyography (QEMG)
motor unit action potential (MUAP)
spectral analysis
Opis:
Statystyczne opracowanie wyników badania elektromiograficznego realizowane w dziedzinie czasu zapewnia w większości przypadków prawidłową klasyfikację patologii bez określenia stopnia zaawansowania choroby. Celem prezentowanych badań jest stworzenie aplikacji, która wykorzystując specjalnie opracowane algorytmy cyfrowego przetwarzania sygnałów, w sposób automatyczny i jednoznaczny wyznaczy rodzaj patologii oraz stopień uszkodzenia badanego mięśnia. Celem niniejszej publikacji jest wprowadzenie w dziedzinę elektromiografii klinicznej oraz uporządkowanie medycznych pojęć związanych z badaniami elektromiograficznymi w kontekście inżynierskim, pozwalające na stworzenie niezbędnej płaszczyzny łączącej krajowe środowiska medyczne i techniczne.
Electromyography (EMG) is a functional examination which plays a fundamental role in diagnostics of muscles and nerves diseases. The method allows us for distinction between records of healthy muscle and a changed one as well as for determination whether pathological changes are of primary myogenic or neurogenic character. Statistical processing of electromyography examination performed in the time domain ensures mostly correct classification of pathology without determination of a disease progression. However, because of an ambiguity of temporal parameters definitions, a diagnosis can include a significant error which depends strongly on physician experience. So far, medical practice imposes, as a consensus, registration of at least 20 different functional potentials of motor units belonging to one muscle. Then, selected temporal parameters (presented in the paper) are determined for each run and their mean values are calculated. In the final stage these mean the values are compared with a standard and, including also additional clinical information, a diagnosis is given. A final effect of the first research stage was development of a definition for single point discriminant directly enabling a unique diagnosis to be made. An essential advantage of the suggested discriminant is a precise and algorithmically realized definition which enables an objective comparison of examination results obtained by physicians with different experience and working in different research centers. So, the definition fulfils a fundamental criterion for the parameter used for standard preparation. A suggestion of the standard for selected muscle is presented in the last part of the paper. The aim of next studies is a definition of standards which could allow a unique classification of myogenic, neurogenic, and normal cases for a large group of muscles based on a more numerous population. Currently, the authors are working on implementation of suggested procedures into diagnostic software that could be compatible with Viking IV D system developed by the Nicolet BioMedical Inc. The secondary purpose of the paper is a systematization of medical concepts related to electromyography examinations in the engineering context. The systematization should create a useful platform connecting domestic medical and technical societies.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2007, 56, 1; 83-97
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza wielorozdzielcza i sieć SVM w zastosowaniu do klasyfikacji potencjałów czynnościowych
Multiresolution analysis and Support Vector Machine for motor unit classification
Autorzy:
Dobrowolski, A. P.
Wierzbowski, M.
Tomczykiewicz, K.
Powiązania:
https://bibliotekanauki.pl/articles/209509.pdf
Data publikacji:
2009
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
elektromiografia ilościowa (QEMG)
potencjał czynnościowy jednostki ruchowej (PJR)
analiza wielorozdzielcza
aproksymacja falkowa
skalogram
sieć SVM
diagnostyka medyczna
quantitative electromyography (QEMG)
motor unit action potential (MUAP)
multiresolution analysis
wavelet approximation
scalogram
support vector machine (SVM)
medical diagnosis
Opis:
W artykule przedstawiono nową metodę diagnozowania chorób nerwowo-mięśniowych opartą na analizie skalogramów wyznaczonych za pomocą falek Symlet 4. Z otrzymanych skalogramów wyekstrahowano 5 cech, które po analizie w sieciach SVM sprowadzono do pojedynczego parametru klasyfikującego analizowane przypadki do grupy miogennej, neurogennej i prawidłowej. Implementacja programowa metody stworzyła narzędzie diagnostyczne wspomagające badanie EMG o bardzo wysokim prawdopodobieństwie prawidłowej oceny stanu mięśnia (błąd całkowity wyniósł 0,66% - dwie błędne klasyfikacje na 300 badanych pacjentów).
The paper presents a new approach to the computer aided diagnostic systems for the needs of quantitative electromyography. The approach is based on the analysis of wavelet scalograms of the motor unit action potentials calculated on the basis of 4th order Symlet wavelet. The scalograms provide the vector consisting of five features describing the state of a muscle. The vectors serve to carry out a classification of pathology by using Support Vector Machine method. The QEMG examination consists of the insertion of a needle electrode into a muscle and a registration of muscle potentials during low effort. Registered potentials are called motor unit action potentials (MUAPs). A diagnosis is usually preceded by a statistical analysis of a MUAP shape. An inconvenience of this procedure in a clinical practice is caused by high time- consumption arising, among others, from the necessity of determination of many parameters, usually between 4 and 7. Additionally, an ambiguity in determination of basic temporal parameters can cause doubts during comparison of parameters found by the physician with standard ones determined in other research centre, which mostly uses equipment of older generation. Measurement results on diagnostic method deprived of above - mentioned disadvantages are described in the paper. The aim of our work was a development of new methods for transformation of action potential signals observed in EMG records for healthy muscles and changed ones. The multiresolution decomposition method was devoted to determination of a vector of characteristic features of signals corresponding to analyzed categories. Then, this vector was used for effective recognition of these categories using linear Support Vector Machine technique. The final effect of research is development of a definition for numerical classificator directly enabling a unique diagnosis to be made. An essential advantage of the suggested classificator is a precise and algorithmically realized definition which enables an objective comparison of examination results obtained by physicians with different experience and working in different research centres. The presented diagnostic method ensures significantly better distinction between pathological and healthy cases as compared to methods using traditional parameters defined in time and frequency domains. Sensitivity of the wavelet method, for 100% specificity, amounts to 100% for myogenic and to 97% for neurogenic pathological states.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2009, 58, 3; 275-302
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies