- Tytuł:
- Nonlinear predictive control based on neural multi-models
- Autorzy:
-
Ławryńczuk, M.
Tatjewski, P. - Powiązania:
- https://bibliotekanauki.pl/articles/907773.pdf
- Data publikacji:
- 2010
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
sterowanie procesami
sterowanie predykcyjne
sieć neuronowa
optymalizacja
linearyzacja
process control
model predictive control
neural networks
optimisation
linearisation - Opis:
- This paper discusses neural multi-models based on Multi Layer Perceptron (MLP) networks and a computationally efficient nonlinear Model Predictive Control (MPC) algorithm which uses such models. Thanks to the nature of the model it calculates future predictions without using previous predictions. This means that, unlike the classical Nonlinear Auto Regressive with eXternal input (NARX) model, the multi-model is not used recurrently in MPC, and the prediction error is not propagated. In order to avoid nonlinear optimisation, in the discussed suboptimal MPC algorithm the neural multi-model is linearised on-line and, as a result, the future control policy is found by solving of a quadratic programming problem.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 7-21
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki