Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "instance selection" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Multiple-instance learning with pairwise instance similarity
Autorzy:
Yuan, L.
Liu, J.
Tang, X.
Powiązania:
https://bibliotekanauki.pl/articles/330821.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
multiple instance learning
instance selection
similarity
support vector machine (SVM)
uczenie maszynowe
podobieństwo
metoda wektorów wspomagających
Opis:
Multiple-Instance Learning (MIL) has attracted much attention of the machine learning community in recent years and many real-world applications have been successfully formulated as MIL problems. Over the past few years, several Instance Selection-based MIL (ISMIL) algorithms have been presented by using the concept of the embedding space. Although they delivered very promising performance, they often require long computation times for instance selection, leading to a low efficiency of the whole learning process. In this paper, we propose a simple and efficient ISMIL algorithm based on the similarity of pairwise instances within a bag. The basic idea is selecting from every training bag a pair of the most similar instances as instance prototypes and then mapping training bags into the embedding space that is constructed from all the instance prototypes. Thus, the MIL problem can be solved with the standard supervised learning techniques, such as support vector machines. Experiments show that the proposed algorithm is more efficient than its competitors and highly comparable with them in terms of classification accuracy. Moreover, the testing of noise sensitivity demonstrates that our MIL algorithm is very robust to labeling noise.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 3; 567-577
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies