Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "octabromodiphenyl ether" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Eter oktabromodifenylowy – mieszanina izomerów 2,2’,3,3’,4,4’,5’,6-, 2,2’,3,3’,4,4’,6,6’- i 2,2’,3,4,4’,5,5’,6- – frakcja wdychalna
Autorzy:
Szymańska, J.
Bruchajzer, E
Powiązania:
https://bibliotekanauki.pl/articles/137393.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
eter oktabromodifenylowy
narażenie zawodowe
toksyczność
tarczyca
NDS
octabromodiphenyl ether
occupational exposure
toxicity
thyroid
MAC
Opis:
Eter oktabromodifenylowy (OktaBDE) jest białym ciałem stałym otrzymywanym przez bromowanie eteru difenylowego. Najczęstszą postacią w jakiej występował eter oktabromodifenylowy były mieszanki techniczne (handlowe). Składały się one ze związków o różnym stopniu ubromowania. Eter oktabromodifenylowy jest substancją zmniejszającą palność, najczęściej stosowaną w połączeniu z tritlenkiem antymonu przy produkcji takich syntetycznych polimerów, jak: ABS, HIPS i PBT, wykorzystywanych w przemyśle: samochodowym, elektrycznym i elektronicznym. Ze względu na swoje właściwości fizykochemiczne (m.in. słabą rozpuszczalność w wodzie, stabilność termiczną i chemiczną) oraz zdolność do kumulacji, eter oktabromodifenylowy zaliczono do trwałych zanieczyszczeń organicznych (persistent organic pollutants, POPs). W 2004 r. wprowadzono zakaz produkcji 6 i stosowania eteru oktabromodifenylowego. Eter oktabromodifenylowy może dostawać się do środowiska w wyniku: użytkowania, składowania odpadów oraz recyklingu urządzeń zawierających ten związek. Stężenia eteru oktabromodifenylowego w powietrzu hali, w której demontowano sprzęt komputerowy dochodziły do 6600 pg/m3 (gdy stężenia wszystkich polibromowanych difenyloeterów wynosiły 170 000 pg/m3). W dostępnym piśmiennictwie nie ma informacji o zatruciach eterami oktabromodifenylowymi ludzi. Eter oktabromodifenylowy w doświadczeniach na zwierzętach wykazywał małą toksyczność. Średnie dawki śmiertelne (DL50) dla szczurów po podaniu dożołądkowym przekraczały 5000 mg/kg masy ciała. Związek nie działał także drażniąco na skórę i oczy oraz nie powodował uczuleń. Zarówno w doświadczeniach krótkoterminowych, jak i po podawaniu wielokrotnym eteru oktabromodifenylowego u zwierząt obserwowano podobne skutki toksyczne. Najbardziej istotne znaczenie w toksycznym działaniu eteru oktabromodifenylowego mają zmiany czynnościowe w wątrobie i tarczycy, a po narażeniu inhalacyjnym także zmiany w układzie oddechowym. W badaniach krótkoterminowych (po 4 ÷ 14 dniach podawania dożołądkowego) pierwsze objawy toksyczności (zwiększenie względnej masy wątroby, wzrost aktywności PROD w wątrobie) stwierdzono po 4 dniach podawania dawki 10 mg/kg/dzień eteru oktabromodifenylowego. Po większych dawkach (30 ÷ 100 mg/kg/dzień) skutki te się nasilały, a ponadto dochodziło do zaburzeń funkcjonowania tarczycy (obniżenie poziomów T3 i T4 w surowicy). Po 14-dniowym podawaniu dawki 80 mg/kg/dzień związku zaobserwowano znaczne przyspieszenie metabolizmu wątrobowego. Po wielokrotnym (28- i 90-dniowym) dożołądkowym narażeniu szczurów na dawki wynoszące około 7 ÷ 8 mg/kg/dzień eteru oktabromodifenylowego obserwowano pierwsze obawy toksyczne, jakimi było zwiększenie względnej masy wątroby i zmiany histopatologiczne w wątrobie. Pierwsze niekorzystne objawy działania związku zanotowano po dawkach około 70 ÷ 80 mg/kg/dzień, gdy po 28 dniach stwierdzono umiarkowaną hiperplazję tarczycy, a po 90 dniach – zwiększenie masy tarczycy i zaburzenia jej funkcji (obniżenie poziomu T4 w surowicy). Po większych dawkach eteru oktabromodifenylowego (około 700 ÷ 1000 mg/kg/dzień) skutki te się nasilały. Po podprzewlekłym (90-dniowym) inhalacyjnym narażeniu szczurów na eter oktabromodifenylowy o stężeniu 1,1 mg/m3 nie zanotowano toksyczności układowej, obserwowano jedynie nieznaczne powiększenie komórek kubkowych w błonie śluzowej nosa (toksyczność miejscowa). Po narażeniu na związek o stężeniu 16 mg/m3 stwierdzono ponadto: zmiany zapalne w płucach, rozrost hepatocytów i zaburzenia funkcjonowania tarczycy (zwiększenie poziomu TSH i zmniejszenie stężenia T4 w surowicy). Po narażeniu na związek o stężenie 202 mg/m3 objawy te się nasiliły, a dodatkowo zaobserwowano zaburzenia rozrodczości (brak ciałka żółtego u 30% samic i brak prawidłowych komórek w kanalikach nasiennych samców lub obecność w kanalikach nasiennych komórek nieprawidłowych). Eter oktabromodifenylowy nie wykazywał działania mutagennego i genotoksycznego. U zwierząt laboratoryjnych wpływał niekorzystnie na rozwój płodów, powodując m.in.: zwiększenie liczby przypadków resorpcji późnych, zmniejszenie masy urodzeniowej płodów, zmiany kostnienia oraz zaburzenia rozwojowe kości kończyn, żeber i mostka. Eter oktabromodifenylowy nie jest klasyfikowany jako kancerogen dla ludzi, a w Environmental Protection Agency (EPA) zaliczono go do klasy D. Mechanizm toksycznego działania polibromowanych difenyloeterów (PBDEs), w tym również eteru oktabromodifenylowego, jest związany z indukcją enzymów mikrosomalnych w wątrobie, co może prowadzić do zmian w metabolizmie ksenobiotyków. Indukcja enzymów mikrosomalnych, głównie CYP 1A1 i CYP 1A2 (EROD) oraz CYP 2B (PROD), wskazuje na wiązania z receptorem Ah i CAR. Zmiany metabolizmu mogą mieć wpływ na homeostazę hormonów tarczycy, powodując tym samym zaburzenia rozwoju ośrodkowego układu nerwowego, głównie u młodych osobników. Dotychczas nie ustalano na świecie wartości normatywów dla eteru oktabromodifenylowego w środowisku pracy. Istnieje jedynie propozycja SCOEL (2010), by wartość OEL wynosiła 0,2 mg/m3. Podstawą do proponowanej wartości najwyższego dopuszczalnego stężenia (NDS) są dane w piśmiennictwie dotyczące toksyczności po 90-dniowym narażeniu inhalacyjnym szczurów. Za podstawę do wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS) proponujemy przyjąć wartość NOAEL dla toksyczności układowej równą 1,1 mg/m3. Po określeniu współczynników niepewności proponujemy przyjąć stężenie 0,1 mg/m3 za wartość NDS eteru oktabromodifenylowego. Nie ma podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) eteru oktabromodifenylowego. Proponujemy także wprowadzenie oznakowania eteru oktabromodifenylowego literami „Ft” oznaczającymi substancje fetotoksyczne.
Octabromodiphenyl ether (octaBDE) is a white solid obtained by bromination of diphenyl ether. The most common form in which octabromodiphenyl ethers occurred were the technical (commercial) mixtures. These consisted of compounds of varying degrees of bromination. Octabromodiphenyl ether was used as a flame retardant, often in combination with antimony trioxide. OctaBDE was used in the production of synthetic polymers such as ABS, HIPS and PBT, which were used in the automotive, electrical and electronic equipment industries. Octabromodiphenyl ether, due to its physicochemical properties (such as a weak water solubility, thermal and chemical stability) and the ability to accumulate is a POP (persistent organic pollutant). The ban on the production and use of octaBDE was introduced in 2004. Octabromodiphenyl ether has been found in the environment as a result of using and recycling equipment containing this compound. Concentrations of 6600 pg/m3 in the air were detected in a hall where hardware was dismantled (concentrations of the sum of polybrominated diphenyl ethers were 170 000 pg/m3). So far, there have been no cases of people being poisoned. Octabromodiphenyl ether in experiments on animals showed low acute toxicity. The mean lethal dose (LD50) for rats after oral administration was 5000 mg/kg body weight. This compound did not irritate the skin or eyes, and did not cause sensitization. The toxic effects observed after short-term experiments and repeated administration of octaBDE to animals were similar. The most important role in the toxic effects of octabromodiphenyl ether are functional changes in the liver and thyroid, and after inhalation exposure - changes in the respiratory tract. In short-term exposure (4-14 days of intragastric administration), the first symptoms of the toxicity (increase in relative liver weight, induction of PROD activity in the liver) were observed after 4-day exposure to octaBDE at 10 mg/kg/day. After higher doses (30 to 100 mg/kg/day) these effects are intensified. In addition, there were signs of the disturbance of thyroid function (decrease in the levels of T3 and T4 in the serum). A significant acceleration of hepatic metabolism was noted after 14-day administration of octaBDE at 80 mg/kg/day. After repeated (28- and 90-day) intragastric exposure of rats to doses of 7–8 mg/kg/day the first symptoms of toxicity (increase in relative liver weight and histopathological changes in the liver) were observed. The 28 doses of 70-80 mg/kg/day caused a moderate hyperplasia of the thyroid, and after 90 days an increase in thyroid weight and its impaired function (reduction T4 levels in the serum). After higher doses of octabromodiphenyl ether (about 700 – 1000 mg/kg/day) the effects were intensified. After subchronic (90 days) inhalation exposure of rats to octaBDE at the concentration of 1.1 mg/m3, no systemic toxicity was observed, only a slight increase in goblet cells in nasal mucosa (topical toxicity). Due to exposure to the compound at the concentration of 16 mg/m3, inflammation in the lungs, hyperplasia of hepatocytes and thyroid dysfunction (increase in TSH levels and decrease in T4 levels in the serum) were found. These symptoms were intensified after exposure to the compound at the concentration of 202 mg/m3; additionally, reproduction disorders were observed (absence of the corpus luteum in 30% of females and no normal cells in the seminiferous tubules or the presence of abnormal cells in the seminiferous tubules in the male). Octabromodiphenyl ether was not mutagenic and genotoxic. In laboratory animals, adverse effects on fetal development were observed; causing, among other things, higher incidence of late resorptions, decreased fetal birth weight, changes in ossification and developmental disorders of limb bones, ribs and sternum. Octabromodiphenyl ether is not classified as a carcinogen for humans, and the Environmental Protection Agency (EPA) classified it in Class D. The mechanism of toxicity of polybrominated diphenyl ethers (PBDEs), including octabromodiphenyl ether, is associated with induction of hepatic microsomal enzymes, which may lead to changes in the metabolism of xenobiotics. Induction of microsomal enzymes, especially CYP 1A1 and CYP 1A2 (EROD) and CYP 2B (PROD), points to the Ah receptor binding and CAR. Changes in metabolism can affect thyroid hormone homeostasis, causing abnormal development of the central nervous system, mainly in young persons. There is only a SCOEL proposal (2010) that the value was 0.2 mg/m3 OEL. The basis for the proposed value of the maximum admissible concentration (MAC) are literature data on the toxicity of 90-day inhalation exposure of rats. To calculate the MAC, we propose the NOAEL for systemic toxicity equal to 1.1 mg/m3. After determining the coefficients of uncertainty, adaption of the concentration of 0.1 mg/m3 for the MAC TWA value for octabromodiphenyl ether has been proposed. No MAC-STEL (NDSCh) values have been established. A "Ft" (fetotoxic substances) notation was recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 3 (73); 5-35
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies