Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "p-value" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Istotność statystyczna w czasach big data
Statistical significance in the era of big data
Autorzy:
Szreder, Mirosław
Powiązania:
https://bibliotekanauki.pl/articles/962757.pdf
Data publikacji:
2019
Wydawca:
Główny Urząd Statystyczny
Tematy:
wnioskowanie statystyczne
testowanie hipotez
istotność staty-styczna
wskaźnik p-value
big data
podejście bayesowskie
statistical inference
hypothesis testing
statistical significance
p-value
big
data
bayesian approach
Opis:
Rozwój nowych technologii wpływa zarówno na realizację badań statystycznych, jak i na postrzeganie ich wyników w świetle innych źródeł informacji. W tym kontekście powraca w środowisku naukowym temat roli testowania hipotez statystycznych oraz interpretowania i przedstawiania jego wyników, w tym stosowania kategorii istotności statystycznej oraz wskaźnika p-value. Inspiracją do powstania tego opracowania stała się fala dyskusji wokół tego zagadnienia toczących się na forum czasopism „Nature” i „The American Statistician” na początku 2019 r. Celem artykułu jest ukazanie szans i zagrożeń, jakie big data stwarza dla weryfikacji hipotez i wnioskowania statystycznego, zarówno w ujęciu klasycznym, jak i w podejściu bayesowskim. Autor uzasadnia konieczność zaniechania zbyt daleko posuniętych uproszczeń w realizacji procesu wnioskowania statystycznego oraz prezentowaniu wyników weryfikacji hipotez. Chodzi zarówno o postulat uwzględnienia jakości danych próbkowych, zwłaszcza typu big data, jak i o podawanie pełnej informacji o modelu statystycznym, na podstawie którego przeprowadza się wnioskowanie.
The development of new technologies has affected both the procedures of traditional statistical surveys and the perception of their results in the light of other available sources of information. In this connection, the role of the verification of statistical hypotheses and of the interpretation and presentation of its results, including the use of statistical significance and p-value, has recently returned as a frequent topic for discussion among the scientific community. The author was inspired to write this paper by a wave of discussion regarding this matter held at the beginning of 2019 in the Nature and The American Statistician journals. The aim of the paper is to present the opportunities provided and challenges posed by the use of big data to the hypothesis verification process and to statistical inference, both in the traditional and Bayesian approaches. The author explains the necessity of discontinuing adopting excessive simplifications while performing statistical inference and presenting the results of the verification of hypotheses. This involves both the postulate to pay greater attention to the quality of sampling data, especially in the case of data originating from big data sets, as well as the postulate to provide full information about the statistical model on the basis of which the inference is being performed.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2019, 64, 11; 42-57
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Szanse i iluzje dotyczące korzystania z dużych prób we wnioskowaniu statystycznym
Opportunities and illusions of using large samples in statistical inference
Autorzy:
Szreder, Mirosław
Powiązania:
https://bibliotekanauki.pl/articles/2106803.pdf
Data publikacji:
2022-08-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
wnioskowanie statystyczne
błąd próbkowania
błąd losowy
liczebność próby
istotność statystyczna
p-value
statistical inference
sampling error
random error
sample size
statistical significance
Opis:
Teoria wnioskowania statystycznego jasno określa korzyści związane z dużą liczebnością próby badawczej. Wraz ze wzrostem wielkości próby maleje ilość błędów ocen szacowanych parametrów populacji (zwiększa się precyzja estymacji), a także rosną wartości mocy testów wykorzystywanych do weryfikacji hipotez statystycznych. Współczesne możliwości łatwego dotarcia do dużych prób badawczych (np. paneli internetowych), a także korzystania z coraz bardziej zaawansowanego i przyjaznego dla użytkownika oprogramowania statystycznego sprzyjają niedostrzeganiu zagrożeń dla wnioskowania statystycznego, jakie wiążą się z dużymi liczebnie próbami. Część badaczy ulega iluzji, że duża próba jest w stanie zniwelować i rozproszyć nie tylko błąd losowy, charakterystyczny dla każdej techniki losowania próby, lecz także błędy nielosowe. Znaczenie dużej liczebności próby jest ponadto jednym z ważnych aspektów toczącej się od kilkunastu lat dyskusji na temat istotności statystycznej (p-value) oraz problemów z jej rozstrzyganiem i interpretowaniem. Celem opracowania jest wskazanie i omówienie konsekwencji dostrzegania w dużych próbach statystycznych jedynie szans, a pomijanie wyzwań i zagrożeń wynikających z ich stosowania. W artykule pokazano, że duża liczebność próby, której doboru dokonano za pomocą techniki nieprobabilistycznej, nie może stanowić alternatywy dla wyboru losowego. W szczególności dotyczy to internetowych paneli wolontariuszy deklarujących chęć udziału w badaniu. Wskazano ponadto na znaczenie komponentu nielosowego w błędzie próbkowania, który nie jest malejącą funkcją liczebności próby. W odniesieniu zaś do współczesnych problemów weryfikacji hipotez nakreślono i zilustrowano przykładem naukowy i etyczny wymiar podążania za istotnością statystyczną z wykorzystaniem dużych liczebnie prób lub wielokrotnego próbkowania.
The theory of statistical inference clearly describes the benefits of large samples. The larger the sample size, the fewer standard errors of the estimated population parameters (the precision of the estimation improves) and the values of the power of statistical tests in hypothesis testing increase. Today’s easy access not only to large samples (e.g. web panels) but also to more advanced and user-friendly statistical software may obscure the potential threats faced by statistical inference based on large samples. Some researchers seem to be under the illusion that large samples can reduce both random errors, typical for any sampling technique, as well as non-random errors. Additionally, the role of a large sample size is an important aspect of the much discussed in the recent years issue of statistical significance (p-value) and the problems related to its determination and interpretation. The aim of the paper is to present and discuss the consequences of focusing solely on the advantages of large samples and ignoring any threats and challenges they pose to statistical inference. The study shows that a large-size sample collected using one of the non-random sampling techniques cannot be an alternative to random sampling. This particularly applies to online panels of volunteers willing to participate in a survey. The paper also shows that the sampling error may contain a non-random component which should not be regarded as a function of the sample size. As for the contemporary challenges related to testing hypotheses, the study discusses and exemplifies the scientific and ethical aspects of searching for statistical significance using large samples or multiple sampling.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2022, 67, 8; 1-16
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies